期刊文献+

卷积神经网络在博客多标签中的应用 被引量:1

Application of Convolutional Neural Network in Blog Multi-Label
下载PDF
导出
摘要 由于卷积神经网络在训练前就需要确定分类个数,所以用一个卷积神经网络模型能为文章添加的标签总个数是确定的不能改变的,而使用多个卷积神经网络模型组合可以避免这类问题。在实现多标签中首先使用词向量库将文字转化为词向量,然后依次用多个卷积神经网络模型对文章进行提取特征并分类,其中通过对预测出的类别概率分析来添加相应的标签,可以代替人工操作节省撰写文章人的时间。 Since the convolutional neural network needs to determine the number of classifications before training,the total number of labels that can be added to the article by a convolutional neural network model is determined and cannot be changed,and multiple convolutional neural network models are used.Combinations can avoid such problems.In the implementation of multi-labels,the word vector library is first used to convert the words into word vectors,and then the articles are extracted and classified by using multiple convolutional neural network models in turn,and corresponding labels are added by predicting the category probability analysis.Instead of manual operations,this can save time writing articles.
出处 《工业控制计算机》 2019年第12期55-56,共2页 Industrial Control Computer
关键词 卷积神经网络 文本分类 多标签 博客 convolutional neural network text classification multi-label blog
  • 相关文献

参考文献3

二级参考文献13

  • 1China Internet Network Information Center.The 23th Statistical Report of China Internet Network Development[EB/OL].http://www.cnnic.net.cn/uploadfiles/pdf/2009/1/13/92458.pdf,2009.
  • 2Sun Ai-xin,Suryanto M A,Liu Ying.Blog classification using tags:an empirical study[C].ICSDL 2007,LNCS 4882,307-316,2007.
  • 3Brooks C H,Montanez N.Improved annotation of the blogosphere via autotagging and hierarchical clustering[A].WWW 2006,625-632[C].ACM Press,2006.
  • 4McCallum A,Nigam K.A comparison of event models for Nave bayes text classification[A].AAAI-98 Workshop on Learning for Text Categorization[C/OL].AAAI Press.http://www.cs.cmu.edu/-mccallum,2000.
  • 5Ni Xiao-chuan,Wu Xiao-yuan,Yu Yong.Automatic identification of Chinese weblogger's interests based on text classification[C].Proceedings of the 2006 IEEE/WIC/ACM Internationl Conference on Web Intelligence,2006,247-253.
  • 6Yang Yi-ming,Pederson J.O.A comparative study on feature selection in text categorization[A].Proceedings of the 14th International Conference of Machine Learning[C].San Francisco:Morgan Kaufmann Publishers,1997,412-420.
  • 7Kohavi R.A study of cross-validation and bootstrap for accuracy estimation and model selection[A].FourteenthInternational Joint Conference on Artificial Intelligence (IJCAI 95)[C].Morgan Kaufmann Publishers,1995,1137-1143.
  • 8黎健成,袁春,宋友.基于卷积神经网络的多标签图像自动标注[J].计算机科学,2016,43(7):41-45. 被引量:20
  • 9廖祥文,张丽瑶,宋志刚,程学旗,陈国龙.基于卷积神经网络的中文微博观点分类[J].模式识别与人工智能,2016,29(12):1075-1082. 被引量:12
  • 10夏从零,钱涛,姬东鸿.基于事件卷积特征的新闻文本分类[J].计算机应用研究,2017,34(4):991-994. 被引量:20

共引文献20

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部