期刊文献+

基于多工况迁移学习的磨机负荷参数软测量 被引量:3

Soft Sensor of Ball Mill Load Parameters Based on Multi-Mode Transfer Learning
原文传递
导出
摘要 湿式球磨机运行过程中需要对多个负荷参数进行监测,然而运行工况改变会导致实时数据和建模数据的同分布假设不再成立。针对传统软测量方法不能考虑负荷参数之间的关联性,以及多工况情况下建模数据和实时数据概率分布变化引起的模型性能恶化问题,有针对性的引入迁移学习策略与多任务学习机制,建立一种基于多工况迁移学习的湿式球磨机负荷参数软测量模型。首先采用联合分布适配在降维过程中共同适配不同工况的边缘和条件分布,然后利用多任务最小二乘支持向量机方法对磨机负荷参数进行回归预测。实验结果表明,该软测量方法显著优于现有的方法,适用于多工况情况下的软测量建模。 It is necessary to monitor multiple load parameters during the operation of wet ball mill.However,the change of working condition will lead to the fact that the real time data and the modeling data do not satisfy the assumption of independent and identically distributed.In order to solve the deterioration of model performance caused by the change of probability distribution of historical data and real time data under multiple conditions,and the correlation between the load parameters cannot be fully considered by the traditional soft sensing model.The transfer learning strategy and multi-task learning mechanism is introduced to establish a soft sensing model of wet ball mill load parameters based on multi condition transfer learning.Firstly,the joint distribution adaptation is used to fit the marginal and conditional distribution in the dimension reduction process.Then,the mill load parameters are predicted by multi-task least squares supports vector machines.Experimental result indicates that the performance of the proposed method is superior or at least comparable with existing benchmarking methods,can solve the problem of soft sensor under multiple loading condition.
作者 贺敏 支恩玮 程兰 阎高伟 HE Min;ZHIEn-wei;CHENG Lan;YAN Gao-wei(College of Information Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《控制工程》 CSCD 北大核心 2019年第11期1994-1999,共6页 Control Engineering of China
基金 国家自然科学基金项目(61450011) 山西省自然科学基金(2015011052)
关键词 多工况 迁移学习 湿式球磨机负荷参数 联合分布适配 多任务 最小二乘支持向量机 Multi-mode transfer learning wet ball mill load parameters joint distribution adaptation multi-task least-squares support vector machine
  • 相关文献

参考文献3

二级参考文献52

  • 1沙毅,曹英禹,郭玉刚.磨煤机振声信号分析及基于BP网的料位识别[J].东北大学学报(自然科学版),2006,27(12):1319-1323. 被引量:7
  • 2Zhou P, Chai T Y, Wang H. Intelligent optimal-setting con- trol for grinding circuits of mineral processing process. IEEE 3Yansactions on Automation Science and Engineering, 2009, 6(4): 730-743.
  • 3Tham M T, Montague G A, Morris A J, Lant P A. Soft- sensors for process estimation and inferential control. Jour- nal of Process Control, 1991, 1(1): 3-14.
  • 4Kadlec P, Gabrys B, Strand S. Data-driven soft sensors in the process industry. Computers and Chemical Engineering, 2009, 33(4): 795-814.
  • 5Liu J L. On-line soft sensor for polyethylene process with multiple production grades. Control Engineering; Practice, 2007, 15(7): 769-778.
  • 6Tang J, Chai T Y, Zhao L J, Yu W, Yue H. Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algo- rithm. Neurocomputing, 2012, 78(1): 38-47.
  • 7Rosipal R, Trejo L J. Kernel partial least squares regres- sion in reproducing kernel Hilbert space. Journal orMachine Learning Research, 2002, 2(1): 97-123.
  • 8Kadlec P, Grbic R, Gabrys B. Review of adaptation mech- anisms for data-driven soft sensors. Computers ~z Chemical Engineering, 2011, 35(1): 1-24.
  • 9Gallagher N B, Wise B M, Butler S W, White D D Jr, Barna C C. Development and benchmarking of multivariate statis- tical process control tools for a semiconductor etch process: improving robustness through model updating. In: Proceed- ings of the 1997 Advanced Control of Chemical Processes. Banff, Canada: IEEE, 1997. 78-83.
  • 10Wold S. Exponentially weighted moving principal compo- nents analysis and projections to latent structures. Chemo- metrics and Intelligent Laboratory Systems, 1994, 23(1): 149-161.

共引文献25

同被引文献38

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部