期刊文献+

具有导向功能的改进烟花算法 被引量:1

Improved firework algorithm with directional function
下载PDF
导出
摘要 为消除烟花算法(firework algorithm,FWA)中爆炸半径对搜索范围的限制,增强各类搜索算子的导向性,提出具有导向功能的改进烟花算法(improved fwa with directional function,IdFWA)。充分利用当代最优个体的位置信息以及历代的全局最优解,设计两种具有导向功能的搜索算子。使用12个标准测试函数对增强型烟花算法EnFWA、自适应烟花算法AFWA、有导烟花算法GFWA和IdFWA进行对比测试,实验结果表明,改进后的烟花算法无论在单峰函数还是多峰函数上的收敛速度和求解精度皆优于其它3个算法。 To eliminate the limitation of the radius of the explosion on the search radius and strengthen the directional ability when searching in different ranges,an improved firework algorithm with directional function was proposed.Two search methods with directional function were designed according to the information of the location of best seed and historical optimal solution.12 standard benchmark functions were used to test the solution accuracy and the convergence speed of enhanced firework algorithm,adaptive firework algorithm,guided firework algorithm and improved firework algorithm with directional function.Results show that the improved firework algorithm performs better than others in solution accuracy and convergence speed whether in handling uni modal function or multi model function.
作者 陶小华 陈基漓 谢晓兰 TAO Xiao-hua;CHEN Ji-li;XIE Xiao-lan(College of Information Science and Engineering,Guilin University of Technology,Guilin 541006,China)
出处 《计算机工程与设计》 北大核心 2019年第12期3479-3486,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(61762031)
关键词 增强型烟花算法 导向功能 自适应变异率 西格玛函数 自适应烟花算法 有导烟花算法 firework algorithm directional function adaptive mutation rate sigma adaptive firework algorithm guided firework algorithm
  • 相关文献

参考文献7

二级参考文献39

  • 1徐雪仁,宫鹏,黄学智,金勇.资源卫星(可见光)遥感数据获取任务调度优化算法研究[J].遥感学报,2007,11(1):109-114. 被引量:29
  • 2Abdelkader R F. An improved discrete PSO with GA operators for effi-cient QoS-multicast routing[ J]. International Journal of Hybrid Infor-mation Technology, 2011,4(2) :23 -38.
  • 3Yong Wang, Zixing Cai, Qingfu Zhang. Differential evolution withcomposite trial vector generation strategies and control parameters [ J ].IEEE Trans. Evolut. Compter,2011,15( 1) :55 -66.
  • 4Figueiredo E M N, Ludermir T B. Effect of the PSO topologies on theperformance of the PSO-ELM [ C ] //Proceedings of the 2012 BrazilianSymposium on Neural Networks (SBRN,12),2012:178 - 183.
  • 5Tsujimoto T, Shindo T, Kimura T, et al. A relationship between net-work topology and search performance of PSO[ C ] //Proceedings of theIEEE Congress on Evolutionary Computation(CEC* 12) , 2012:1 ~6.
  • 6Tan Y, Zhu Y C. Fireworks Algorithms for Optimization [ C]//Proc.of Int. Conf. on Swarm Intelligence (ICSI2010) ,PartII, LNCS 6145,Beijing,China, 2010.12 — 15(6) :355-364.
  • 7Hamzacebi C. Improved genetic algorithms, performance by localsearch for continues fuction optimization[ J]. Applied Mathematics andComputation,2008,196(1) :309-317.
  • 8Tan Y, Zhu Y C. Fireworks algorithms for optimization [C]//Proceedings of Int. Conf. on Swarm Intelligence (ICSI2010), Part II. Beijing, China : LNCS 6145,2010: 355-364.
  • 9Pholdee N, Bureerat $. Comparative performance of meta-heuristic algorithm for mass minimission of trus- ses with dynamic constraints [J]. Advances in Engi- neering Software, 2014,75 (9): 1-13.
  • 10Zheng S, Andreas J, Tan Y. Enhanced fireworks algo- rithm[C]// IEEE International Conference on Evolu- tionary Computation. Cancun, MEXICO : IEEE, 2013 2069-2077.

共引文献29

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部