摘要
本文研究了一类具有非常数位势的Klein-Gordon-Maxwell系统:—+ V{x)u — ( 宀 + 0)0/ = XE R3,=(3 + ) 龙 € R3,其中3>0是一个常数,u, 利用临界点理论和下降流不变集的方法,得到了Klein-Gordon-Maxwell 系统无穷多变号解的存在性.
In this paper, we consider the Klein-Gordon-Maxwell system with non-cons tautpot ential:(—+ V{x)u — (2a;+ 0)0“ = /(-u), x 6 R3,[A0 =(CU + 0)饥2, X G R3,where > 0 is a constant, u, (¢) : R3 R. We get infinitely many sign-changing solutionsfor the above nonlinear Klein-Gordon-Maxwell system by using the method of invariant setsof descending flow.
作者
张鲁豫
ZHANG Luyu(School of Mathematics and Statistics,North China University of Water Resources and Electric Power,Zhengzhou 450011,China)
出处
《应用数学学报》
CSCD
北大核心
2019年第6期779-792,共14页
Acta Mathematicae Applicatae Sinica
基金
华北水利水电大学博士科研启动基金(No.40609)资助项目