期刊文献+

高效换热器内冷凝换热热阻的实验研究

Experimental study on the condensation heat transfer resistance for the high efficiency heat exchanger
原文传递
导出
摘要 在水平强化管内R134a的冷凝换热实验中,对试验工况中管内流型进行计算预测,使用关联式对管内传热系数进行预测,以校核实验数据的可靠性,以质量流量、冷凝温度为变量,以总传热系数K、冷冻水传热系数h_w、制冷剂传热系数h_r为衡量指标,对强化管换热热阻进行研究。实验结果表明:总传热系数K、制冷剂传热系数h_r均随质量流量的增加而增大,且对应冷凝温度越低其值越大,而冷冻水传热系数h_w随质量流量的增加而稍有降低,冷凝温度对其值影响并不大。此外,随着质量流量的增加,冷冻水热阻占总热阻比值逐渐增加,但制冷剂热阻总是小于冷冻水热阻,且冷凝温度越低,两者的差值越大。换热管内外热阻比重IOR随着质量流量的增加而降低,随着冷凝温度的升高而增大。 In the experiment of condensation heat transfer of R134 a in the horizontal enhanced tubes, firstly in order to calculate and predict the flow pattern inside the tube under test conditions,and then correlations were used to predict the heat transfer coefficient inside the tube to check the reliability of experimental data, finally, mass flux and condensation temperature were selected as the variables, the total heat transfer coefficient K、the water heat transfer coefficient h_w、the refrigerant heat transfer coefficient h_r were seen as performance evaluation index to study the heat resistance of the enhanced tube. The experimental results show that the total heat transfer coefficient K and the refrigerant heat transfer coefficient hr increase with the increasing mass flux and the decreasing corresponding condensation temperature, but the chilled water heat transfer coefficient hw slightly decreases with increasing mass flux, and condensation temperature has a small influence on it. In addition, as the mass flow rate increases,the thermal resistance ratio of the chilled water gains in the total resistance, but the thermal resistance of the refrigerant side is less than the chilled water side, and the lower the condensation temperature the greater the difference. Furthermore, the inside and outside ratio IOR decreases with increasing mass flow and increaseswith increasing condensation temperature.
作者 杨卫芳 桂超 Yang Weifang;Gui Chao(School of Civil Engineering and Architecture,Xinxiang University,Xinxiang 453003,China;School of Energy and Power Engineering,Shanghai University for Science and Technology,Shanghai 200093,China)
出处 《低温与超导》 CAS 北大核心 2019年第11期77-81,96,共6页 Cryogenics and Superconductivity
关键词 冷凝换热 热阻分析 冷冻水热阻、制冷剂热阻 Condensation heat transfer Thermal resistance analysis Water thermal resistance Refrigerant thermal resistance
  • 相关文献

参考文献7

二级参考文献41

  • 1周光辉,张定才.R134a在水平强化管外凝结换热的实验研究[J].制冷学报,2006,27(6):25-28. 被引量:10
  • 2邵莉,韩吉田,潘继红.R-134a在水平直管和螺旋管内凝结换热特性的实验研究[J].制冷学报,2007,28(2):23-26. 被引量:7
  • 3WU Jin-xing, HAN Dong-fang, CAO Hai-liang, et al. High efficien- cy heat exchangers and their energy-saving applications [ M]. Firstedition, Beijing: Chemical Industry Press,2009.9.
  • 4Chamra L M, Webb R L. Advanced micro-fin tubes for condensa- tion[ J]. Int J Heat and Mass Transfer. 1993,39 (9) :1839 - 1846.
  • 5Cavallini A, DelCol D, Doretti L, et al. Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes [ J ]. Int J of Refrig,2000,23:4 - 25.
  • 6Cavallini A, Censi G, Delcel D, et al. Condensation inside and out- side smooth and enhanced tubes-a review of recent research [ J ]. Int J of Refrig,2003,26:373 - 392.
  • 7Dongsoo Juug, Youngmok Cho, Kiho Park. Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes [ J ]. Int J of Refrig,2004,27 : 25 - 32.
  • 8Jonathan A Olivier, Leon Liebenberg, John R. Thome, et al. Heat transfer, pressure drop, and flow pattern recognition during eonden- sation inside smooth, helical micro-fin, and herringbone tubes [ J ]. International Journal of Refrigeration,2007,30 : 609 - 623.
  • 9CHEN Jian-hong, OUYANG Xin-ping, LI Hui. Development of a monitoring and control system for a intensified heat exchange tube test stand [ J ]. Refrigeration and Air-conditioning,2008,8 ( 4 ) :48 -50.
  • 10史美中.热交换器原理与设计[M].第二版.南京:东南大学出版社.2003.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部