期刊文献+

Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach 被引量:3

下载PDF
导出
摘要 Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however,blade get damaged due to wind gusts,bad weather conditions,unpredictable aerodynamic forces,lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade.It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine.In this paper,a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades.The models are built based on computing the vibration response of the blade when it is excited using piezoelectric accelerometer.The statistical,histogram and ARMA methods for each algorithm were compared essentially to suggest a better model for the identification and localization of crack on wind turbine blade.
出处 《Structural Durability & Health Monitoring》 EI 2019年第2期181-203,共23页 结构耐久性与健康监测(英文)
  • 相关文献

同被引文献12

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部