期刊文献+

非凸稀疏正则化的广义条件梯度算法 被引量:1

Generalized Conditional Gradient Algorithm for Non-convex Sparse Regularization
下载PDF
导出
摘要 提出一种具有非凸、非光滑的α‖·‖l1-β‖·‖l21(α>β≥0)罚项的正则化泛函,并且构造了一种新的迭代算法来求解带有αl1-βl2约束的非线性稀疏正则化.该算法利用广义条件梯度算法,将其推广到带有非凸稀疏罚项的非线性正则化方程中,构造出一种适用于非凸稀疏正则化的软阈值算法,并给出了该算法收敛性的证明. In this paper,a regularized functional with non-convex and non-smoothα‖·‖l1-β‖·‖l2(α>β≥0)penalty is proposed.A new iterative algorithm is constructed to solve theαl1-αl2 constrained nonlinear sparse regularization.The new algorithm is based on the generalized conditional gradient algorithm,the generalized conditional gradient algorithm to the nonlinear regularization equation with non-convex sparse penalty is extended.A soft iterative threshold algorithm for non-convex sparse regularization is proposed and its convergence property is proved.
作者 赵辉 丁亮 Zhao Hui;Ding Liang(Northeast Forestry University)
机构地区 东北林业大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2019年第5期1-6,75,共7页 Natural Science Journal of Harbin Normal University
基金 国家自然科学基金青年基金(41304093) 黑龙江省博士后科研启动基金(LBH-Q16008)
关键词 非线性 非凸 广义条件梯度法 稀疏正则化 不适定问题 Nonlinear Non-convex Generalized conditional gradient algorithm Sparse regularization Ill posed problem
  • 相关文献

参考文献1

二级参考文献24

  • 1Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B N, Caki F, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973. 267 -281.
  • 2Schwarz G. Estimating the dimension of a model. Ann Statist, 1978, 6:461-464.
  • 3Mallows C L. Some comments on Cp. Technometrics, 1973, 15:661-675.
  • 4Tibshirani R. Regression shrinkage and selection via the Lasso. J Royal Statist Soc B, 1996, 58:267-288.
  • 5Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory, 2001, 47:2845-2862.
  • 6Donoho D L, Elad E. Maximal sparsity representation via l1 minimization. Proc Natl Acal Sci, 2003, 100:2197-2202.
  • 7Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit. SIAM Rev, 2001, 43:129-159.
  • 8Fan J, Heng P. Nonconcave penalty likelihood with a diverging number of parameters. Ann Statist, 2004 32:928-961.
  • 9Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc, 2006, 101:1418-1429.
  • 10Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal Statist Soc B, 2005, 67:301-320.

共引文献37

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部