期刊文献+

基于光强变化场景的目标检测与跟踪新方法 被引量:8

New method for target detection and tracking by changing illumination
下载PDF
导出
摘要 为在光强变化场景下实现目标的检测与跟踪,研究了一种新方法。该方法综合集成了Vibe算法与粒子滤波算法的优点,通过在改进Vibe算法中引入光照补偿模型、重构粒子滤波模型,解决了2种方法对光强变化的自适应性难题;在局部三值模式(LTP)中建立了一种自适应阈值方法,并采用线性回归分类方法,实现了目标跟踪。通过开发相应程序并将所提新方法的结果与标准结果进行对比验证,验证结果表明:新方法的偏差小于文中其他3个对照方法的相应偏差,该方法对光强变化场景下的目标检测与跟踪研究有一定帮助。 For detecting and tracking the moving objects of interest by changing illumination,a new method is proposed.The proposed method combines improved Vibe algorithm with the particle filter algorithm by introducing illumination feeding model to Vibe algorithm,and reconstructing the particle filter to solve the changing illumination problem.In the phase of moving target tracking,Linear Regression Classifier(LRC)is introduced into the recognition algorithm,as well as the background information.The improved Local Ternary Pattern(LTP)is adopted to carry out feature extraction and recognition.Developing the program and carrying out some experiments,the experimental results demonstrate that the new method can assist detecting and tracking moving target with changing illumination study.
作者 刘默涵 侯嵬 LIU Mohan;HOU Wei(College of Electrical Engineering,Sichuan University,Chengdu Sichuan 610044,China;Electronic Countermeasures Institute,National University of Defense Technology,Hefei Anhui 230031,China)
出处 《太赫兹科学与电子信息学报》 北大核心 2019年第6期1000-1005,1026,共7页 Journal of Terahertz Science and Electronic Information Technology
关键词 目标检测 目标跟踪 粒子滤波算法 Vibe算法 LTP算子 target detection target tracking particle filter algorithm Vibe algorithm Local Ternary Pattern
  • 相关文献

参考文献6

二级参考文献45

  • 1陈永雷,胡云安,赵永涛.基于动态模板与位置预测的运动目标识别与跟踪[J].海军航空工程学院学报,2007,22(2):230-232. 被引量:8
  • 2陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 3张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 4万磊,黄蜀玲,张铁栋,等.基于可见光图像的智能水下机器人管道跟踪系统.中国激光,2014,41(s1):s109006.
  • 5Ross D A, Lim J, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
  • 6Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 7Zhang K H, Zhang L, Yang M H. Real-time object tracking via online discriminative feature selection[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4664-4677.
  • 8Zhang K H, Zhang L, Yang M H, Fast compressive tracking[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
  • 9Black M J, Jepson A D. Eigentracking: Robust Matching and Tracking of Articulated Objects using a View-Based Representation[M]. Berlin: Springer, 1996.
  • 10Qing C M, Zhao S M, Xu X M. The incremental PCA tracking with negative samples[C]. 2014 IEEE International Conference on Consumer Electronics, 2014: 1-4.

共引文献241

同被引文献49

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部