期刊文献+

Ag/AgCl/PDA-rGO无酶葡萄糖传感器的构建 被引量:2

Non-enzymatic glucose biosensor based on Ag/AgCl/Polydopamine-Graphene composite
下载PDF
导出
摘要 利用多巴胺的自聚性能及还原性,采用一步法制备聚多巴胺/银复合物修饰的还原石墨烯复合纳米材料.采用的工作电极是玻碳电极,将制备的复合纳米材料滴涂在其表面,构建了无酶葡萄糖电化学传感器(Ag/AgCl/PDA-rGO).材料的结构和组成借助X射线衍射、拉曼光谱等仪器进行了表征和分析,表明本方法成功地将聚多巴胺和银复合物均匀地负载于还原石墨烯的表面,同时通过调节反应时间,改变和控制Ag/AgCl/PDA-rGO材料中聚多巴胺和银复合物的负载量.此外,使用交流阻抗技术和循环伏安法分析和研究了Ag/AgCl/PDArGO修饰电极的电化学性能.试验结果表明,Ag/AgCl/PDA-rGO构建的无酶葡萄糖传感器在葡萄糖浓度为5~9 mmol/L时,线性关系良好. According to self-polymerization property of dopamine and reductibility,polydopamine/silver composite/graphene was synthesized in one step.In addition,the graphene compound fixing on the surface of glassy carbon electron as a working electrode was used to construct a non-enzymatic glucose sensor.With a series of characterization methods such as X-ray power diffraction(XRD)and Raman spectrum,polydopamine/silver composite/graphene is synthesized successfully.Further,concentration of polydopamine/silver composite can be controlled by the reactive time.Electrochemical performance was tested with electrochemical impedance spectroscopy(EIS)and cyclic voltammetry(CV).The biosensor has shown a good linear relationship under the condition that concentration of glucose is between 5 mmol/L and 9 mmol/L.
作者 王瑞 胡亦杨 蒋晓濛 赵攀登 程伶俐 焦正 WANG Rui;HU Yiyang;JIANG Xiaomeng;ZHAO Pandeng;CHENG Lingli;JIAO Zheng(School of Life Sciences,Shanghai University,Shanghai 200444,China;School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期943-949,共7页 Journal of Shanghai University:Natural Science Edition
关键词 氧化石墨烯 多巴胺 葡萄糖传感器 graphene oxide dopamine Ag glucose sensor
  • 相关文献

参考文献3

二级参考文献114

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306 : 666-669.
  • 2Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim AK. Science, 2007, 315:1379-1379.
  • 3Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau N. Nano Lett. , 2008, 8 : 902-907.
  • 4Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F. Phys. Rev. Lett. , 2008, 101:196405-196408.
  • 5Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321 : 385-388.
  • 6Service R F. Science, 2009, 324:875-877.
  • 7Chen D, Tang L H, Li J H. Chem. Soc. Rev. , 2010, 39: 3157-3180.
  • 8Chen D, Feng H B, Li J H. Chem. Rev. , doi: 10. 1021/ cr300115g.
  • 9TangL H, WangY, LiY M, Feng H B, Lu J, Li J H. Adv. Funct. Mater. , 2009, 19:2782-2789.
  • 10Liu JB, LiYL, LiYM, LiJH, DengZX. J. Mater. Chem., 2010, 20:900-906.

共引文献117

同被引文献8

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部