期刊文献+

PSO-BP神经网络在开关柜设备温度预测中的应用 被引量:7

Application of PSO-BP neural network in temperature prediction for switchgear equipment
下载PDF
导出
摘要 温度是衡量电力开关柜设备健康状态的重要指标,对开关柜内设备进行准确的温度预测可有效的提前把握其运行状态.传统BP神经网络可以实现温度预测,但由于该网络在训练过程中容易陷入局部极小值,影响了温度预测的准确性.提出了一种PSO优化BP神经网络对设备温度进行预测的方法.首先,将电力运行数据集进行预处理,在网络训练前,利用PSO对神经网络的权值和阈值进行优化,得到PSO-BP预测模型;最后将预测模型运用到开关柜设备温度预测中.实验结果表明:相较于传统的神经网络温度预测方法,文中提出的方法能够对开关柜内设备温度进行有效的预测,为电网管理实现从传统预防性维护到主动预测性的转变提供了一种有效途径. Temperature is an important indicator to measure the health status of power switchgear equipment.Accurate temperature prediction of equipment in the switchgear can effectively grasp its operating status in advance.The traditional BP neural network can realize temperature prediction,but it is easy to fall into local minimum values during the training process,which affects the accuracy of temperature prediction.This paper proposes a PSO-optimized BP neural network to predict the temperature of equipment.Firstly,the power operation data set is preprocessed.Before the network training,the weight and threshold of the neural network are optimized by PSO to obtain the PSO-BP prediction model.Finally,the established prediction model is applied to the temperature prediction for the switchgear equipment.The experimental results show that,compared with the traditional neural network temperature prediction method,the method proposed in this paper can effectively predict the temperature for equipment in the switchgear.This method provides an effective way for grid management from traditional preventive maintenance to active predictive.
作者 郭文强 董瑶 李清华 张梦梦 王立贤 GUO Wen-qiang;DONG Yao;LI Qing-hua;ZHANG Meng-meng;WANG Li-xian(School of Electronic Information and Artificial Intelligence,Shaanxi University of Science&Technology,Xi′an 710021,China;School of Electrical and Control Engineering,Shaanxi University of Science&Technology,Xi′an 710021,China;Xi′an Xihan Power Technology Co.,Ltd.,Xi′an 710065,China)
出处 《陕西科技大学学报》 CAS 2020年第1期149-153,共5页 Journal of Shaanxi University of Science & Technology
基金 陕西省教育厅产业化培育计划项目(18JC003) 陕西省科技厅科研计划项目(2017JM6057) 陕西省西安市科技计划项目(2019216514GXRC001CG002GXYD1.1)
关键词 开关柜 温度预测 PSO-BP 神经网络 switchgear temperature prediction PSO-BP neural networks
  • 相关文献

参考文献10

二级参考文献98

  • 1曹宏.基于组态监控的高压开关柜温度预警系统设计[J].电气传动自动化,2009,31(2):41-45. 被引量:3
  • 2王建华,耿英三,宋政湘.智能电网与智能电器[J].电气技术,2010,11(8):1-3. 被引量:8
  • 3从爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2009.
  • 4Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5):359~366
  • 5Blum E K, Li L K. Approximation theory and feed forward networks. Neural Networks, 1991,4 (4): 511~515
  • 6Huang S C, Huang Y F. Bounds on number of hidden neurons in multiplayer perceptrons. IEEE Trans on Neural Networks,1991, 2(1) :47~55
  • 7Sartori M A, Antsaklis P J. A simple method to drive bounds on the size and to train multiplayer neural networks. IEEE Trans on Neural Networks, 1991, 2(3): 467~471
  • 8Reed R. Pruning algorithm--a survey. IEEE Trans on Neural Networks, 1993,4(5) :740~747
  • 9刘金琨.智能控制[M].北京:电子工业出版社,2011.
  • 10傅忠云.粒子群优化BP算法在电力系统短期负荷预测中的应用[J].重庆工学院学报,2007,21(19):93-96. 被引量:4

共引文献252

同被引文献88

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部