期刊文献+

分数阶复合控制在光电稳定平台中的应用 被引量:4

Application of Fractional Compound Control in Photoelectric Stable Platform
下载PDF
导出
摘要 针对高精度光电稳定平台系统的跟踪精度易受到摩擦力矩和非线性干扰等因素的影响,运用加性分解理论将光电稳定平台系统分解为主系统和辅系统。主系统采用基于加速度的分数阶PID控制方法,确保视轴的跟踪精度。针对辅系统提出了基于速度信号的分数阶干扰观测器(FO-VDOB)的设计方法,利用分数阶的阶次能够在实数范围内任意选取的特点,可以更好地解决干扰抑制和估计补偿,保证视轴的稳定。结合分数阶理论设计分数阶滑模补偿器,在辅系统中进一步补偿未知的干扰。利用有限时间收敛理论和李雅普诺夫理论证明了系统在有限时间内达到了稳定。实验结果表明,该方法使得光电稳定平台系统对运动目标具有很高的跟踪精度。 The tracking accuracy of high-precision photoelectric stability platform system is susceptible to friction torque and nonlinear interference.The additive decomposition theory is used to decompose the photoelectric stability platform system into the main system and the auxiliary system.An acceleration-based fractional-order PID control method is adopted for the main system to ensure the tracking accuracy of the visual axis.To the auxiliary system a design method of fractional-order disturbance observer based on velocity signal is proposed.By using the characteristics that the fractional-order can be arbitrarily selected within the real number field interference suppression and estimation compensation can be better solved to ensure the stability of the visual axis.A fractional-order sliding mode compensator is designed based on the fractional-order theory to further compensate for the unknown interference in the auxiliary system.The finite time convergence theory and the Lyapunov theory are used to prove that the system can achieve stability in a finite time.The experimental results show that by using the method the photoelectric stability platform system has high tracking accuracy for moving targets.
作者 杨建文 任彦 YANG Jianwen;REN Yan(School of Information Engineering Inner Mongolia University of Science and Technology,Baotou 014010 China)
出处 《电光与控制》 CSCD 北大核心 2020年第1期73-78,共6页 Electronics Optics & Control
基金 国家自然科学基金(61563041) 内蒙古自治区自然科学基金资助项目(2019MS06002)
关键词 稳定平台 加性分解 分数阶控制 滑模控制 干扰补偿 stable platform additive decomposition fractional-order control sliding mode control disturbance compensation
  • 相关文献

参考文献7

二级参考文献88

  • 1韩京清.扩张状态观测器参数与菲波纳奇数列[J].控制工程,2008,15(S2):4-6. 被引量:41
  • 2丁新平,杨俊友,孙荣斌.基于干扰观测器PID控制的磁悬浮系统[J].沈阳工业大学学报,2005,27(3):288-290. 被引量:14
  • 3訾斌,段宝岩,仇原鹰.基于干扰观测器的Fuzzy-PID控制及应用研究[J].系统工程与电子技术,2006,28(6):892-895. 被引量:5
  • 4WEN LI,YOICHI HORI.Vibration Suppression Using Single Neuron-based PI Fuzzy Controller and Fractional-Order Disturbance Observer[J].IEEE Transactions on Industrial Electronics,2007,54(1):117-126.
  • 5CHEW H,BALLANCE D J,GAWTHROP P J,et al.A nonlinear disturbance observer for robotic manipulators[J].IEEE Transactions on Industrial Electronics,2000,47(4):932-938.
  • 6MACHADO J A T. Analysis and design of fractional - order digital control systems [ J ]. Systems Analysis Model Simulation, 1997, 27(2/3) :107 - 122.
  • 7KOMADA S, MACHII N,HORI T. Control of redundant manipulators considering order of disturbance observer [ J ]. IEEE Transactions on Industrial Electronics, 2000, 47 (2) :413 -420.
  • 8LEE H S, TOMIZUKA M. Robust motion control design for high accuracy position system [ J]. IEEE Transactions on lndnstrial Electronics, 1996, 43 (1):48-55.
  • 9LUBICH C. Discretized fractional calculus[ J]. SIAM Journal on Mathematical Analysis, 1986, 17 ( 3 ) :704 - 719.
  • 10OUSTALOUP A, LEVRON F, MATHIEU B, et al. Frequencyband complex noninteger differentiator: characterization and synthesis [J]. IEEE Transactions on Circuit and Systems-I: Fundamental Theory and Applications, 2000, 47 ( 1 ) :25 - 39.

共引文献45

同被引文献18

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部