期刊文献+

水下航行器冷水机组设计优化研究 被引量:2

Research on optimal design of underwater vehicle chiller
下载PDF
导出
摘要 溴化锂冷水机组噪声低,运行稳定性高,耗能少,且可减轻二回路海水排热负荷,是水下航行器冷水机组的最佳选择。本文对水下航行器溴化锂冷水机组进行设计优化研究。首先建立溴化锂冷水机组的设计模型,确定机组设计条件,热力设计原理和传热设计原理;然后通过MATLAB编程,对溴化锂冷水机组的设计过程进行计算,确定机组各设备换热面积及机组能效等级;最后根据水下航行器的运行特性,对机组进行优化设计。原名义工况下冷水机组COP为1.2,单位冷量蒸汽耗量为1.39 kg/kWh,为能效3级产品。温湿度独立控制和大温差低温送风技术设计优化后,冷水机组COP分别为1.3和1.25,单位冷量蒸汽耗量分别为1.20 kg/kWh和1.25 kg/kWh,相对优化前分别减少13.7%和10.1%。 Lithium bromide chiller has the advantage of low noise,high operational stability,low energy consumption,and can reduce the second loop heat discharge load of the sea water,which is the best choice for underwater vehicle.In this paper,the design and optimization research of the lithium bromide chiller for underwater vehicles are carried out.Firstly,the design model of the lithium bromide chiller is established,and the design conditions,thermal design principle and heat transfer design principle of the unit are determined.Then through MATLAB programming,the design process of the lithium bromide chiller is calculated to determine the heat exchange area of each unit and the energy efficiency level of the unit.Finally,according to the operating characteristics of the underwater vehicle,the unit is optimized.The conclusions are as follows:Under nominal conditions,the chiller COP is 1.2,the steam consumption per unit is 1.39 kg/kWh,and the energy efficiency level is 3.Design optimization is achieved of lithium bromide chillers for underwater vehicles with independent control of temperature and humidity and large temperature difference air supply with low temperature technology.The COP s of the two technologies are 1.3 and 1.25,and the steam consumption per unit of the two technologies are 1.20 kg/kWh and 1.25 kg/kWh,which decrease by 13.7%and 10.1%respectively than pre-optimization.
作者 夏军宝 李毅 黎春梅 李玮玮 邬芝胜 孙冠宇 郝承明 王艺 黄捷 武相 张骐 Xia Junbao;Li Yi;Li Chunmei;Li Weiwei;Wu Zhisheng;Sun Guanyu;Hao Chengming;Wang Yi;Huang Jie;Wu Xiang;Zhang Qi(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China)
出处 《制冷与空调》 2019年第12期44-50,共7页 Refrigeration and Air-Conditioning
关键词 水下航行器 溴化锂冷水机组 优化设计 温湿度独立控制 大温差送风 underwater vehicle lithium bromide chiller optimal design temperature and humidity independent control large temperature difference air supply
  • 相关文献

参考文献7

二级参考文献25

  • 1陈亚平,王克勇,施明恒.1.x级溴化锂吸收式制冷循环性能分析[J].工程热物理学报,2005,26(2):193-195. 被引量:7
  • 2文柏通,顾建明,陆震.复合热源驱动的吸收式制冷系统的控制策略研究[J].流体机械,2006,34(2):68-71. 被引量:3
  • 3阳季春,季杰,裴刚,蒋爱国,何伟.间接膨胀式太阳能多功能热泵供热实验[J].中国科学技术大学学报,2007,37(1):53-60. 被引量:25
  • 4Arun M B, Maiya M P, Srinivasa M S. Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems [J]. Applied Thermal Engineering, 2000, 20(3) : 227-242,.
  • 5Liu Y L, Wang R Z. Performance prediction of a solar/gas driving double effect LiBr-H2O absorption system[J]. Renewable Energy, 2004, 29 (10) : 1 677- 1 695.
  • 6Arun M B, Maiya M P, Srinivasa M S. Performance comparison of double-effect parallel flow and series flow water lithium bromide absorption systems[J].Applied Thermal Engineering, 2001, 21 (12): 1 273- 1 279.
  • 7Xu G P, Dai Y Q. Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller[J]. Applied Thermal Engineering, 1997, 17(2) :157-170.
  • 8李夏莉,李树林.溴化锂吸收式制冷机的发展及选择[J].西安制冷,1999,(1):83-87.
  • 9陈可越.船舶设计实用手册[M].北京:中国交通科技出版社,2007.
  • 10陆耀庆.实用供热空调设计手册[Z].,1993..

共引文献24

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部