期刊文献+

采用类内迁移学习的红外/可见光异源图像匹配 被引量:10

Infrared-Visible Heterogenous Image Matching Based on Intra-Class Transfer Learning
下载PDF
导出
摘要 为解决异源图像匹配中样本量过少和成像原理不同导致成像差异的问题,提出了一种采用类内迁移学习的异源图像匹配网络(PairsNet)。该网络由特征提取子网络和匹配度量子网络两部分组成。特征提取子网络中存在4条卷积神经网络分支,其通过卷积神经网络分支提取出红外图像和可见光图像的特征。将可见光图像作为源域、红外图像作为目标域进行迁移学习,通过减小两个域中样本特征的类内最大均值差异距离,实现了源域和目标域对应图像类别上精准的样本特征分布对齐。匹配度量子网络使用2个全连接层和1个softmax层进行串联,评估出异源图像特征的匹配度。构建了红外和可见光图像数据集,进行端到端的训练和测试。结果表明:与当前使用预训练模型微调的方法相比,PairsNet的准确率提升了10.54%,可见光图像匹配网络的能力可以有效迁移到异源图像匹配网络。 To solve the problem of imaging difference and too few training samples in infrared-visible images matching,a matching network based on intra-class transfer learning is proposed.The network consists of feature extraction subnetwork and metric subnetwork.Owing to four convolutional neural network(CNN)branches in feature extraction subnetwork,the proposed network is referred to as PairsNet for short.The CNN branches extract infrared and visible image features.The visible image is used as the source domain and the infrared image as the target domain.By reducing the maximum mean discrepancy distance of intra-class samples in the two domains,more accurate sample distribution alignment is achieved in the intra-class feature space.The metric subnetwork uses two full connection layers and one softmax layer in series to evaluate infrared-visible image matching performance.Infrared and visible image data sets are built for end-to-end training and testing.The experimental results show that the accuracy of PairsNet is improved by 10.54%,compared with the network fine-tuning method based on pre-training model.The ability of visible image matching network can be effectively transferred to the infrared-visible image matching network.
作者 毛远宏 贺占庄 马钟 毕瑞星 王竹平 MAO Yuanhong;HE Zhanzhuang;MA Zhong;BI Ruixing;WANG Zhuping(Xi’an Microelectronics Technology Institute,Xi’an 710065,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第1期49-55,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金青年科学基金资助项目(61702413)
关键词 异源图像 图像匹配 迁移学习 infrared-visible images image matching transfer learning
  • 相关文献

参考文献3

二级参考文献27

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2舒丽霞,周成平,彭晓明,丁明跃.基于Hausdorff距离图象配准方法研究[J].中国图象图形学报(A辑),2003,8(12):1412-1417. 被引量:27
  • 3王东峰,张丽飞,刘小军,邹谋炎.基于广义特征点匹配的全自动图像配准[J].电子与信息学报,2005,27(7):1013-1016. 被引量:9
  • 4洪贝,孙继银.图像配准技术研究[J].战术导弹控制技术,2006(3):109-112. 被引量:8
  • 5林晓梅,魏巍,李琏.多模态图像配准技术[J].计算机测量与控制,2006,14(9):1227-1229. 被引量:1
  • 6LI Hui, YI Tong zhou. Automatic visual/IR image registration [ J ]. Optical Engineering, 1996,35 ( 2 ) :391-400.
  • 7Peng Wang, Zhi-guo Qu, Ping Wang, et al. A Coarse-to-Fine Matching Algorithm for FLIR and Optical Satellite Image Registration[J]. leee Geoscienee And Remote Sensing Letters, 2012, 9(4): 599-603.
  • 8Barbara Zitova, Jan Flusser. Image registration methods: a survey[J]. Image and Vision Computing, 2003(21): 977-1000.
  • 9Yong Sun Kim, Jae Hak Lee, Jong Beom Ra. Multi-sensor image registration based on. intensity and edge orientation information[J]. Pattern Recognition, 2008(41): 3356-3365.
  • 10李冬梅,张惊雷.基于SURF算法的可见光与红外图像的匹配[J].仪器仪表学报,2011,32(6):268.270.

共引文献28

同被引文献144

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部