期刊文献+

基于用户参与的社交网站标签差异及有效性研究——以豆瓣读书网为例 被引量:2

Research on the differences and validity of social website labels based on user participation:taking Douban Reading as an example
下载PDF
导出
摘要 文章对豆瓣读书网站60个资源451个标签进行统计分析,以人工检测方式对豆瓣读书网站的标签有效性进行检验。结果显示:用户标注的重点在关键词、主题词、国家、作者、内容领域、资源类型这几个特征上,且不同资源类型之间的标签的侧重点不同;豆瓣读书网上的标签有效性不佳,文学类资源和科技类资源有效性差距大;各类资源标签的差异性导致各类资源标签的有效性存在一定差别。 The article statistically analyzes the 451 labels of 60 resources of Douban Reading website in a statistical way,and tests the validity of the label of Douban Reading website by manual detection.The results show that:first,the user’skey points are in the keyword subject,country,author,content field,resource type,and the label of different resourcetypes is different.Second,the effectiveness of the label of Douban Reading website is not good,and the gap between theliterary resources and the science and technology resources is large.Third,the differences in the labeling of variousresources lead to certain differences in the validity of various resource labels.
作者 夏洋 Xia Yang(College of Computer and Information Science,Southwest University,Chongqing 400715,China)
出处 《江苏科技信息》 2019年第36期67-71,共5页 Jiangsu Science and Technology Information
关键词 豆瓣读书 标签 差异 有效性 watercress reading label difference validity
  • 相关文献

参考文献1

二级参考文献29

  • 1徐静,卢章平.基于Folksonomy的信息组织及其优化[J].新世纪图书馆,2011(4):34-36. 被引量:4
  • 2Anusua T, Piyush R, Hal D, et al. Leveraging social bookmarks from partially tagged corpus for improved webpage clustering [ J ]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 111-130.
  • 3Zubiaga A, Martinez R, Fresno V. Getting the most out of social annotations for Web page classification [ C ] //Proceedings of the 9th ACM symposium on Document engineering. Germany: ACM,2009:74 -83.
  • 4Zhou Ding, Bian Jiang, Zheng Shuyi, et al. Exploring social annotations for information retrieval [ C ] // Proceedings of the 17th International World Wide Web Conference. Beijing: 2008: 715 -724.
  • 5Zhao Shiwan, Du Nan, Nauerz A. et al. Improved recommendation based on collaborative tagging behaviors [ C ]//Proceedings of the 13th International Conference on Intelligent User Interfaces. Gran Canaria: ACM, 2008:413-416.
  • 6Goh D H, Chua A, Lee C S, et al. Resource discovery through social tagging: A classification and content analytic approach[J]. Online Information Review, 2009, 33 (3) : 568 - 583.
  • 7Gu Xiwu, Wang Xianbing, Li Ruixuan, et al. Measuring social tag confidence: Is it a good or bad tag? [ J ]. Web - Age Information Management Lecture Notes in Computer Science, 2011,6897 : 94 - 105.
  • 8Lee S E, Han S S K. Qtag: Introducing the qualitative tagging system [ C - //Proceedings of the Eighteenth Conference on Hypertext and Hypermedia. New York : ACM, 2007 : 35 - 36.
  • 9Sen S, Harper F M, LaPitz A, et al. The quest for quality tags [ C] //Proceedings of the 2007 International ACM Conference on Supporting Group Work. New York : ACM, 2007:361 -370.
  • 10Zhang S, Farooq U, Carroll J M. Enhancing information scent: Identifying and recommending quality tags [ C ] //Proceedings of the ACM 2009 International Conference on Supporting Group Work. New York : ACM, 2009: 1-10.

共引文献16

同被引文献23

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部