期刊文献+

基于VMD-PARAFAC的轴承故障欠定盲源分离 被引量:8

Underdetermined blind source separation of bearing faults based on VMD-PARAFAC
下载PDF
导出
摘要 针对传统的轴承故障欠定盲源分离方法需要施加约束的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和平行因子(parallel factor,PARAFAC)分析的欠定盲源分离方法.利用VMD算法将振动信号分解为多个带限本征模态函数(band-limited intrinsic mode functions,BLIMFs),将这些BLIMFs构造成三阶张量作为PARAFAC模型的输入,利用三线性交替最小二乘算法对模型分解,从而在宽松条件下实现复合故障信号的分离.仿真和实验结果表明,提出的方法是有效的,与传统的故障盲源分离方法比较,提出的方法在多故障盲源分离中更具有适应性和实用性. Aiming at the problem that traditional underdetermined blind source separation methods for bearing faults need to impose some constraints,a new underdetermined blind source separation method based on variable mode decomposition(VMD)and parallel factor analysis(PARAFAC)was proposed.VMD algorithm was used to decompose the vibration signal into band limited intrinsic mode functions(BLIMFs),and then these BLIMFs were constructed into three-order tensor as the input to PARAFAC model.The model was decomposed by trilinear alternating least square algorithm,so that the compound fault signal could be separated in loose conditions.The simulation and experimental results show that the as-proposed method is very effective.Compared with the traditional blind source separation method,the as-proposed method is more adaptive and practical in the blind source separation of multi-fault.
作者 李志农 杨晓飞 陈长征 LI Zhi-nong;YANG Xiao-fei;CHEN Chang-zheng(Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China;School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《沈阳工业大学学报》 EI CAS 北大核心 2020年第1期63-68,共6页 Journal of Shenyang University of Technology
基金 国家自然科学基金项目(51675258) 机械系统与振动国家重点实验室课题项目(MSV201914)
关键词 平行因子分析 变分模态分解 主成分分析 盲源分离 滚动轴承 故障诊断 张量分解 复合故障 parallel factor analysis variational mode decomposition principal component analysis blind source separation rolling bearing fault diagnosis tensor decomposition compound fault
  • 相关文献

参考文献3

二级参考文献28

  • 1范虹,孟庆丰,张优云,冯武卫.基于滤波器组和高阶累积量的信号特征检测[J].振动与冲击,2007,26(2):29-32. 被引量:4
  • 2LI ZH N ,ZENG Y D , FAN T , et al. Source separation method of machine faults based on post-nonlinear blind source separation[ C ]. Proceedings of the 7th World Con- gress on Intelligent Control and Automation, Chongqing 2008 : 1786-1789.
  • 3ACHARD S , PHANM D T , JUTFEN C. Criteria based on mutual information minimization for blind source sepa- ration in post nonlinear mixtures [ J ]. Signal Processing, 2005, 85(5): 965-974.
  • 4HONKEJA A,VALPOLA H , ILIN A , et al. Blind sepa- ration of nonlinear mixtures by variational Bayesian learn- ing [ J ]. Digital Signal Processing, 2007, 1 ( 5 ) : 914-934.
  • 5HARMELONG S,ZIEHE A,KAWANBE M, et al. Ker- nel-based nonlinear blind source separation [ J ] Neural Computation, 2003, 15(1 ) : 1089-1124.
  • 6HARMLING S, ZIEHE A , Kernel feature spaces and nonlinear blind source separation[ J]. Fifteenth Annual Neural Information Processing Systems Conference. 2002 : 761-768.
  • 7HARDOON D R, SZEDMAK S. Canonical correlation analysis: An overview with application to learning methods [ J ]. Neural Comput, 2004, 16 12 ) : 2639 -2664.
  • 8BORGA M, KNUTSSON H . A canonical correlation ap- proach to blind source separation [ D ]. Linkopings Uni- versitet, 2002.
  • 9郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75-79. 被引量:76
  • 10何沿江,齐明侠,罗红梅.基于ICA和SVM的滚动轴承声发射故障诊断技术[J].振动与冲击,2008,27(3):150-153. 被引量:13

共引文献25

同被引文献83

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部