摘要
为了解决回溯搜索优化算法在迭代后期种群多样性低,易于陷入局部最优,且对高维复杂问题难以求得最优解的问题,将环形拓扑结构和二阶震荡因子引入该算法,提出一种基于环形拓扑结构的二阶震荡回溯搜索优化算法。将环形拓扑结构和原算法的全互连型拓扑结构相结合,在算法迭代后期调用环形拓扑结构,以避免种群多样性减少造成的早熟收敛现象;将交叉矩阵进一步迭代,并加入二阶震荡因子,以增加算法对高维函数的求解能力;通过将改进后的算法和基础回溯搜索算法、基于冯诺依曼的混沌回溯搜索算法、受启发的回溯搜索算法、粒子群优化算法做比较,验证了改进后的算法在收敛精度、收敛速度、统计检验3方面都优于其他4种算法,说明了改进算法的可行性、高效性。
In order to solve the problems that the backtracking search optimization algorithm has low population diversity,easy to fall into local optimal value,and is difficult to find the optimal solution for high-dimensional complex problems,the ring topology and second-order oscillating factor are introduced into the algorithm,and a second-order oscillating backtracking search optimization algorithm based on ring topology is proposed.The ring topology is combined with the fully interconnected topology of the original algorithm,and the ring topology is called in the late stage of the algorithm to avoid the premature convergence caused by the decrease of population diversity.The cross matrix is further iterated and the second-order oscillator is added to increase the ability of the algorithm to solve high-dimensional functions.By comparing the improved algorithm with the basic backtracking algorithm,the chaos backtracking algorithm based on von Neumann,the inspired backtracking algorithm and the particle swarm optimization algorithm,it is verified that the improved algorithm is superior to the other four algorithms in convergence accuracy,convergence speed and statistical test.The feasibility and efficiency of the improved algorithm are illustrated.
作者
席孟飞
贺兴时
杨新社
李帮娜
XI Mengfei;HE Xingshi;YANG Xinshe;LI Bangna(School of Science,Xi′an Polytechnic University,Xi′an 710048,China;School of Science and Technology,Middlesex University,London NW44BT,UK)
出处
《纺织高校基础科学学报》
CAS
2019年第4期454-460,共7页
Basic Sciences Journal of Textile Universities
基金
陕西省重点研发计划项目(2018XW-021)
陕西省教育厅专项科学研究项目(19JK0373)
陕西省科技厅软科学研究项目(2019KRM141)
关键词
回溯搜索
优化算法
环形拓扑结构
粒子多样性度量
二阶震荡因子
数值优化
backtracking search
optimization algorithm
ring topology
particle diversity metric
second order oscillation factor
numerical optimization