期刊文献+

MXenes在柔性力敏传感器中的应用研究进展 被引量:8

MXenes in Flexible Force Sensitive Sensors: a Review
下载PDF
导出
摘要 随着可穿戴柔性电子技术的发展,高灵敏度和宽感应范围的柔性力敏传感器的需求量逐渐增大,如何选择兼具高导电性和良好柔性的材料作为传感器的敏感材料是获得高性能传感器的关键。近年来,MXene材料因其导电性好、柔韧性高、亲水性好以及合成可控等优点成为一种极具潜力的导电敏感材料。本文就MXene基柔性力敏传感器的类型、敏感材料的微结构设计方式、传感性能及传感机理等方面的研究进展进行了阐述和总结。 With the development of wearable flexible electronic technology,the demand for flexible sensor with high sensitivity and wide sensing range is gradually increasing.The application of suitable conductive materials with high electrical conductivity and high flexibility as sensitive materials for sensors is the key to obtain high performance sensors.In recent years,MXene materials have become very promising sensitive materials due to their good conductivity,high flexibility,good hydrophilicity,and controllable synthesis.The types of MXene-based flexible force sensors,microstructure design of sensitive materials,sensing performance,and sensing mechanism analysis have been expound and summarized in this paper.
作者 杨以娜 王冉冉 孙静 YANG Yi-Na;WANG Ran-Ran;SUN Jing(The State Key Lab of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;University of Chinese Academy of Sciences,Beijing 100864,China)
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第1期8-18,共11页 Journal of Inorganic Materials
基金 国家自然科学基金(61871368) 中科院青年创新促进会 中国科协青年人才托举工程~~
关键词 MXenes 柔性力敏传感器 材料微结构设计 多相复合 综述 MXenes flexible force sensitive sensors microstructure design of materials multiphase composite review
  • 相关文献

参考文献2

二级参考文献82

  • 1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004).
  • 2A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007).
  • 3S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011).
  • 4V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011).
  • 5T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061 (2012).
  • 6Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541 (2013).
  • 7Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013).
  • 8M. Naguib and Y, Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128 (2015).
  • 9Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014).
  • 10M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AIC2, Adv. Mater. 23(37), 4248 (2011).

共引文献80

同被引文献58

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部