期刊文献+

基于局部模式的癫痫脑电信号自动分类方法 被引量:2

Automatic Classification Method for Epilepsy EEG Signals Based on Local Pattern
下载PDF
导出
摘要 为有效地检测脑电图(EEG)中的癫痫信号,设计一维局部三值模式(1D-LTP)算子提取信号特征,并结合主成分分析(PCA)和极限学习机(ELM)对特征进行分类。通过1D-LTP算子计算信号点的顶层模式和底层模式下的特征变换码以准确滤除干扰信号,并对变换码直方图PCA降维后采用ELM进行分类,以10折交叉验证评估分类性能。实验结果表明,该方法能有效识别在癫痫发作期的EEG信号,其准确率可达99.79%。 In order to effectively detect epileptic signals in Electroencephalogram(EEG),this paper proposes a one-dimensional Local Ternary Pattern(1D-LTP)operator to extract signal features,and the features are classified by combing Principal Component Analysis(PCA)and Extreme Learning Machine(ELM).The 1D-LTP operator is used to calculate the feature-transformation code in the top-level and bottom-level modes of the signal points,so as to accurately filter out the interference signals.Then the histogram of transformation code is dimensionally reduced by PCA and classified by ELM,and the classification performance is evaluated by 10-fold cross validation.Experimental results show that the proposed method can identify EEG signals during seizures,and the recognition accuracy can reach 99.79%.
作者 齐永锋 李陇强 QI Yongfeng;LI Longqiang(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第2期298-303,共6页 Computer Engineering
基金 甘肃省科技计划项目(18JR3RA097) 甘肃省高等学校科研项目(2016A-004)
关键词 脑电图 局部三值模式算子 特征提取 分类 癫痫 Electroencephalogram(EEG) Local Ternary Pattern(LTP)operator feature extraction classification epilepsy
  • 相关文献

参考文献8

二级参考文献51

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2田鹏,杨松林,王成龙.基于小波消噪的时序分析改进法在GPS变形监测中的应用[J].测绘科学,2005,30(6):55-56. 被引量:12
  • 3张海燕,周全,夏金东.超声缺陷回波信号的小波包降噪及特征提取[J].仪器仪表学报,2006,27(1):94-97. 被引量:34
  • 4Abdulhamit Subasi,Ahmet Alkan,Etem Koklukaya,M. Kemal Kiymik.Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing[J].Neural Networks.2005(7)
  • 5J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters.1999(3)
  • 6Alotaiby T N, Alshebeili S A, Alshawi T, et al. EEG sei- zure detection and prediction algorithms: a survey [ J ]. EURASIP Journal on Advances in Signal Processing, 2014,2014 : 183.
  • 7Tzallas A T, Tsipouras M G, Fotiadis D I. Automatic Sei- zure Detection Based on Time-Frequency Analysis and Artificial Neural Networks [ J ]. Computational Intelligence and Neuoscience, 2007,2007 : 80510.
  • 8Prior P F, Virden R S M, Maynard D E. An EEG device formonitoring seizure discharges [ J ]. Epilepsia, 1973,14(40) :367-372.
  • 9Gotman J. Automatic recognition of interictal spikes [ J ]. Electroencephalography and clinical neurophysiology Sup- plement, 1984, 37:93-114.
  • 10Gabor A J, Leach R R, Dowlab F U. Automated seizure detection using a self-organizing neuralnetwork [ J ]. Elec- troencephalography and Clinical Neurophy-siology, 1996, 99(3 ) :257-266.

共引文献57

同被引文献14

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部