摘要
为了完善复合电热化学聚能冲击波技术的工艺参数优化及效果评价,首先进行了大尺寸混凝土岩样的复合电热化学聚能冲击试验,评价了该技术的冲击破岩效果和控制因素;然后建立了可实现强动载重复冲击的数值模型,进行了大尺寸岩样模拟试验;最后利用数值模型系统评价了冲击次数、峰值压力、岩石弹性模量和地应力对措施效果的敏感性,分析了各工艺参数对岩石裂缝数量及作用距离的影响规律,并预测了措施后的增产效果。试验结果表明:复合电热化学聚能冲击波技术可将常规电脉冲的脉冲宽度扩展约1.5倍,冲击峰值压力提高约3.0倍;岩样冲击6次后,产生4条宏观裂缝,模拟井眼周围产生不同程度的破碎。该研究结果为利用复合电热化学聚能冲击波技术的工程应用提供了理论指导。
In order to optimize the process parameters and evaluate the effect of composite the electrothermal-chemical shock wave technique, testing with massive concrete samples was carried out. The first stage involved determining its rock breaking capacity and then the technique’s physical and theoretical constraints. Next, a numerical simulation model under strong dynamic loading was established to simulate the test. Finally, the sensitivity of impact frequency, peak value, elastic modulus of rock and the in-situ stress were evaluated using a numerical model to determine the effect of stimulation. Thus, the influence law of each process parameter on the number of fractures and active distance were analyzed, and the effectiveness of the stimulation was predicted. The experimental results demonstrated that the composite electrothermal-chemical shock wave technique could extend the pulse width of conventional electric pulse by roughly 1.5 times and increase the shock amplitude by around 3.0 times. In addition, four macroscopic fractures were generated in the rock sample after 6 shocks. The effect of composite electrothermal-chemical shock wave technique was evaluated and would provides theoretical guidance for the improvement of reinforced reservoir stimulation using this technique.
作者
李昂
杨万有
丁乾申
康少飞
杨维
吴飞鹏
LI Ang;YANG Wanyou;DING Qianshen;KANG Shaofei;YANG Wei;WU Feipeng(CNOOC EnerTech-Drilling&Production Co.,Tianjin,300452,China;School of Petroleum Engineering,China University of Petroleum(East China),Qingdao,Shandong,266580,China)
出处
《石油钻探技术》
CAS
CSCD
北大核心
2020年第1期72-79,共8页
Petroleum Drilling Techniques
基金
国家自然科学基金项目“爆燃压裂中饱和脆性岩石细观损伤机制及其对宏观破坏的控制规律”(编号:51874339)
“低频人工地震波复合泡沫驱协同增效机理研究”(编号:51904320)
中央高校基本科研业务费专项资金项目“低频波激励下泡沫性能及渗流特征研究”(编号:18CX02095A)
“深层致密高水平应力差异储层多级爆燃诱导体积压裂力学机理研究”(编号:17CX05004)联合资助
关键词
电热化学
冲击波
冲击试验
数值模拟
敏感性
增产效果
electrothermal chemical
shock wave
impact test
numerical simulation
sensitivity
stimulation effect