摘要
给出了分配格上反自反矩阵成为S-幂零矩阵的条件,进而证明了S-幂零矩阵的转置、乘幂是S-幂零矩阵、分配格上S-幂零矩阵与反自反矩阵的乘积是S-幂零矩阵以及对角矩阵与反自反矩阵的乘积是S-幂零矩阵。
In this paper,a condition for an irreflexive matrix over a distributive lattice to be S-nilpotent is given.And it is proved that the transposition and the powers of an S-nilpotent matrix are S-nilpotent.Also,it is proved that the product of an S-nilpotent matrix and an irreflexive matrix over a distributive lattice and the product of a diagonal matrix and an irreflexive matrix are S-nilpotent.
作者
李爱梅
吴妙玲
王亚贤
LI Ai-mei;WU Miao-ling;WANG Ya-xian(School of Basic Sciences,Inner Mongolia University of Technology,Hohht 010051,China)
出处
《模糊系统与数学》
北大核心
2019年第6期52-55,共4页
Fuzzy Systems and Mathematics
基金
内蒙古工业大学教改项目(2017238)
关键词
分配格
三角模
S-幂零矩阵
Distributive Lattice
Triangular Norms
S-nilpotent Matrix