期刊文献+

分配格上的s-幂零矩阵

S-nilpotent Matrices over a Distributive Lattice
原文传递
导出
摘要 给出了分配格上反自反矩阵成为S-幂零矩阵的条件,进而证明了S-幂零矩阵的转置、乘幂是S-幂零矩阵、分配格上S-幂零矩阵与反自反矩阵的乘积是S-幂零矩阵以及对角矩阵与反自反矩阵的乘积是S-幂零矩阵。 In this paper,a condition for an irreflexive matrix over a distributive lattice to be S-nilpotent is given.And it is proved that the transposition and the powers of an S-nilpotent matrix are S-nilpotent.Also,it is proved that the product of an S-nilpotent matrix and an irreflexive matrix over a distributive lattice and the product of a diagonal matrix and an irreflexive matrix are S-nilpotent.
作者 李爱梅 吴妙玲 王亚贤 LI Ai-mei;WU Miao-ling;WANG Ya-xian(School of Basic Sciences,Inner Mongolia University of Technology,Hohht 010051,China)
出处 《模糊系统与数学》 北大核心 2019年第6期52-55,共4页 Fuzzy Systems and Mathematics
基金 内蒙古工业大学教改项目(2017238)
关键词 分配格 三角模 S-幂零矩阵 Distributive Lattice Triangular Norms S-nilpotent Matrix
  • 相关文献

参考文献2

二级参考文献12

  • 1Menger K. Statistical metric spaces[J]. Proc. Nat. Acad. Sci. , 1942,28 : 535 - 537.
  • 2Schweizer B, Sklar A. Statistical metric spaces[J]. Pacific J. Math. ,1960,10: 313-334.
  • 3Schweizer B, Sklar A. Associative functions and statistical triangular inequalities[J]. Publ. Math. Debrecen, 1961,8: 169-186.
  • 4Schweizer B, Sklar A. Associative functions and abstract semigroups[J]. Publ. Math. Debrecen, 1963,10: 69-81.
  • 5Birkhoff G. Lattice theory[M]. American Mathematical Society,Providence,Rhode,1967.
  • 6Yu Y D. L-sets and L-universal algebras[C]//Advances in Fuzzy Theory and Technology, Vol. 1, Bookwrights- Independent Book Producer, NC, 1992 : 91 - 114.
  • 7Yu Y D, Moordeson J N, Cheng S C. Elements of L-algebra[M]. Omaha :Creighton University,1994.
  • 8Davey B A, Priestley H A. Introduction to lattice and order[M]. Londan: Cambridge Univ Press, 2002.
  • 9Give'on Y. Lattice matrices[J]. Inform. Control, 1964, 7: 477-484.
  • 10Tan Y J. On nilpotent matrices over distributive lattice[J]. Fuzzy Sets and Systems, 2005, 151: 421-433.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部