期刊文献+

超分辨光学显微的成像原理及应用进展 被引量:9

ImagingPrinciples and Applications of Super-Resolution Optical Microscopy
原文传递
导出
摘要 突破了衍射极限的超分辨光学显微成像通常被用于观测亚细胞的结构特性及其相互作用,对于研究基因组和攻克重大疾病具有重要意义。首先分别介绍了4种典型的超分辨显微成像技术的工作原理,然后阐述了多色荧光成像和三维成像等观测手段的研究进展,最后综述了近年来国内外超分辨光学成像在细胞活动观测、细菌细胞研究和细胞骨架观测中的应用现状。文中指出,影响成像质量的主要因素包括荧光蛋白较差的光稳定性、低的光活化速率以及弱的荧光强度等。随着上述问题的解决,超分辨光学成像将在厚样品三维成像、多色荧光成像和活细胞快速成像等方面得到广泛应用,最终推动生命科学、材料科学的发展。 Ultra-resolution optical microscopy,which breaks through the diffraction limit,is typically used to observe structural characteristics and interactions of subcells.This method has great significance for the study of genomes and tackling major diseases.This paper begins by introducing the working principles of four typical superresolution microscopic imaging techniques.Subsequently,research progress in the areas of multi-color fluorescence imaging and three-dimensional imaging is emphasized.Finally,recent applications of super-resolution optical imaging for cell activity observation,bacterial cell research,and cytoskeleton observation are reviewed both domestically and abroad.The main factors reportedly affecting the imaging quality are poor light stability of the fluorescent protein,low light activation rate,and weak fluorescence intensity.Solution of the above problems will lead to the widespread use of super-resolution optical imaging for the three-dimensional imaging of thick samples,multi-color fluorescence imaging,and fast imaging of living cells,ultimately furthering the development of life science and materials science.
作者 付芸 王天乐 赵森 Fu Yun;Wang Tianle;Zhao Sen(School of Optoelectronic Engineering,Changchun University of Science and Technology,Changchun,Jilin 130022,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第24期13-25,共13页 Laser & Optoelectronics Progress
基金 吉林省重点科技计划(20170204015GX,20180201049YY)
关键词 显微 衍射极限 荧光成像 活细胞成像 多色荧光成像 三维定位 microscopy diffraction limit fluorescence imaging live-cell imaging multicolor fluorescence imaging three-dimensional localization
  • 相关文献

参考文献6

二级参考文献30

  • 1ABBE E. BEITRAGE ZUR theorie des mikroskops und der mikroskopischen wahrnehmung Pl. Archiv fiir mikroskopische Anatomie, 1873,9 (I): 413-418.
  • 2HELL S, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission[J]. Opt Lett, 1994, 19 (11): 780-782.
  • 3HELL S W, KROUG M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit[J]. Applied Physics B, 1995,60 (5): 495-497.
  • 4KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proc Natl Acad Sci, 2000, 97 (15): 8206-8210.
  • 5GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J Microsc, 2000, 198 (2): 82-87.
  • 6GUSTAFSSON M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of Arne rica, 2005,102 (37): 13081-13086.
  • 7BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006,313 (5793): 1642-1645.
  • 8RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3 (10): 793-796.
  • 9BETZIGE. Proposed method for molecular optical imaging[J]. Opt Lett, 1995,20 (3): 237-239.
  • 10MOERNER W, KADOR L. Optical detection and spectroscopy of single molecules in a solid[J]. Phys Rev Lett, 1989,62 (21): 2535.

共引文献22

同被引文献41

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部