期刊文献+

基于深度学习的城市轨道交通短时客流起讫点预测 被引量:15

Urban Rail Transit Short-time Passenger Flow OD Forecasting Based on Deep Learning Modeling
下载PDF
导出
摘要 提出了一种基于门控循环单元(GRU)神经网络的城市轨道交通短时客流OD(起讫点)预估模型。以实际数据为例,引入同期天气数据,对工作日的数据进行训练预测,并与长短期记忆(LSTM)神经网络模型进行对比。预测结果表明:相对于LSTM模型,GRU模型不仅模型简单、收敛速度明显较快,而且在预估误差和预测稳定性等方面也略优,更适于短时客流OD的快速预测。 A short-term passenger origin-destination(OD)forecasting model for urban rail transit based on gated recurrent unit(GRU)neural network is proposed.Based on the practical data,by importing the weather data during the same period,the training prediction of the working day data is conducted and compared with the long short-term memory(LSTM)neural network model.The results show that the convergence speed of GRU is obviously faster than LSTM,the prediction errors and stability are slightly better than LSTM.Therefore,GRU model is more suitable for short-term passenger flow OD prediction.
作者 侯晓云 邵丽萍 李静 黄磊 李雪岩 HOU Xiaoyun;SHAO Liping;LI Jing;HUANG Lei;LI Xueyan(School of Economics and Management,Beijing Jiaotong University,100044,Beijing,China;不详)
出处 《城市轨道交通研究》 北大核心 2020年第1期55-58,115,共5页 Urban Mass Transit
基金 国家自然科学基金“青年基金”项目(71103014) 国家级大学生创新创业训练计划项目(170140032) 北京市哲社办课题(14JGC095) 北京市交通委员会科技课题(B17M00080) 北京市交通行业科技课题(201905-ZHJC2)
关键词 城市轨道交通 短时客流起讫点预测 门控循环单元神经网络 长短期记忆神经网络 urban rail transit short-term passenger flow OD forecasting GRU neural network LSTM neural network
  • 相关文献

参考文献4

二级参考文献17

  • 1S Bera, K V Krishna Rao. Estimation of origin- destination matrix from traffic counts: the state of the art[J]. European Transport, 2011,49 : 3-23.
  • 2Zhou X S, Mahmassani H S. A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework[J]. Transportation Research Part B: Methodological, 2007, 41(8): 823-840.
  • 3Zhou X S, Mahmassani H S. Dynamic origin destination demand estimation using automatic vehicle identification data[J]. Intelligent Transportation Systems, 2006, 7(1): 105-114.
  • 4Li P W, Chang G L. A generalized model and solution algorithm for estimation of the dynamic freeway origin- destination matrix[J]. Transportation Research Part B, 2007, 41(5):554-572.
  • 5Lou Y, Yin Y. A. Decomposition scheme for estimating dynamic origin- destination flows on actuation- controlled signalized arterials[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(5): 643-655.
  • 6T Toledo, T Kolechkina. Estimation of dynamic origin- destination matrices using linear assignment matrix approximations[J], IEEE Transactions on Intelligent Transportation Systems, 2013,14(2): 618-626.
  • 7Chui C K, Chen G R. Kalman filtering with real-time applications (fourth edition)[M]. Springer, 2009:16-22.
  • 8常云涛.考虑交通流行驶时间的高速公路动态OD矩阵估计模型[J].同济大学学报(自然科学版),2009,37(9):1185-1190. 被引量:5
  • 9孙赟,李明涛,姚晓晖.基于BP神经网络人群流量预测的实现[J].中国安全生产科学技术,2010,6(2):61-65. 被引量:10
  • 10徐瑞华,徐永实.城市轨道交通线路客流分布的实时预测方法[J].同济大学学报(自然科学版),2011,39(6):857-861. 被引量:26

共引文献59

同被引文献165

引证文献15

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部