期刊文献+

发动机罩盖不同振型的模态对设计变量的响应

Response of Engine Hood Modal to Design Variables under Different Vibration Modes
下载PDF
导出
摘要 为了提升发动机罩盖的NVH性能,针对振型为扭转和弯曲的两种情况,研究设计参数对模态的影响,选取罩盖设计中的关键参数为变量,运用最优拉丁超立方技术进行DoE分析;基于RBF神经网络方法搭建模态和变量之间的近似模型,建立模态对变量的响应关系。结果表明,不同变量对同一振型模态的贡献量、相关性及响应关系不同,且在两种振型下的结果有明显差异,为车型开发提供了有效参考。 In order to improve the NVH performance of engine hood and study the relationships of design parameters to modal under torsion or bending vibration mode,some key design parameters are selected as variables.The DoE analysis is developed by Optimal Latin Hypercube Sampling method.The approximation model and response relationship between modal and variables are established using RBF neural network technology.The results show that the contribution,correlation and response relationship of different variables to modal under the same vibration mode are different.And the difference under the two vibration modes is obvious.The conclusion is effective to support the development of products.
作者 曹广军 潘月华 朱敏 CAO Guangjun;PAN Yuehua;ZHU Min
出处 《上海汽车》 2020年第2期25-28,38,共5页 Shanghai Auto
  • 相关文献

参考文献8

二级参考文献40

  • 1朱平,张宇,葛龙,林忠钦.基于正面耐撞性仿真的轿车车身材料轻量化研究[J].机械工程学报,2005,41(9):207-211. 被引量:56
  • 2陆佳平,薛克敏,汪昌盛.逆向工程在汽车覆盖件设计中的应用[J].合肥工业大学学报(自然科学版),2006,29(3):278-280. 被引量:7
  • 3韩永志,高行山,李立州,岳珠峰.基于Kriging模型的涡轮叶片多学科设计优化[J].航空动力学报,2007,22(7):1055-1059. 被引量:38
  • 4MATHERTON.Principles of geo-statistics[J].Economic Geology,1963,58:1246-1266.
  • 5GIUNTA A A,WATSON L T.A comparison of approximation modeling techniques:polynomial vs.Interpolating models[R].AIAA-98-4758.
  • 6SIMPSON T W.Comparison of response surface and kriging models in the multidisciplinary design of an aerospike nozzle[R].NASA/CR-1998-206935,ICASE Report No.98-16.
  • 7LUCIFREDI A,MAZZIERI C,ROSSI M.Applica-tion of multi-regressive linear models,Dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems[J].Mechanical Systems and Signal Processing,2000,14(3):471-494.
  • 8COSTA J P,PRONZATO L,THIERRY E.A com-parison between kriging and radial basis function networks for nonlinear prediction[A].Dans Proc.NSIP'99[C].Antalya,June 1999.
  • 9WELCH W J,BUCK R J,SACKS J.Predicting and computer experiments[J].Technometrics,1992,34(1):15-25.
  • 10WELCH W J,MITCHELL T J,[KG*8]WYNN H P.[KG*8]De-sign and analysis of computer experiments[J].Statistics Science,1989,4(4):409-435.

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部