期刊文献+

单孔冲击式帽罩前缘流动换热特性数值分析

Numerical Analysis of Flow Heat Transfer Characteristics of Leading Edge of Single-hole Impact Cone
下载PDF
导出
摘要 为了提高航空发动机帽罩冲击防冰结构的设计分析水平,对单孔冲击式帽罩前缘结构的流动换热特性进行数值研究,分析了不同冲击孔径与不同冲击雷诺数对帽罩前缘速度流场、换热系数与努塞尔数的分布规律。结果表明:在冲击雷诺数一定的条件下,冲击孔径越大,射流核心速度和前缘壁面附近的气流速度越小,前缘冲击区形成的涡流团越大,当孔径D=6 mm时,小孔径冲击下前缘区整体换热效果不如大孔径的,而在滞止区的换热效果则要优于大孔径的;当D>12 mm时,孔径大小对壁面换热基本没有影响;在冲击孔径相同时,增大冲击雷诺数使得冲击射流、前缘壁面附近及侧壁曲面通道内的气流流速增大,冲击区内的涡流团则逐渐减小;冲击雷诺数的增大也增强了前缘冲击区的换热特性。 In order to improve the design and analysis level of the impact ice proof structure of the aeroengine cone,the flow heat transfer characteristics of the leading edge structure of the single-hole impact cone were studied by numerical method.The distribution of velocity flow field,heat transfer coefficient and Nussel number at the leading edge of cone was analyzed with different impingement aperture and different impingement Reynolds number.The results show that under the condition of a certain impingement Reynolds number,the larger the impingement aperture is,the smaller the core velocity of the jet and the velocity of the airflow near the leading edge wall are,and the larger the vortex mass formed in the front edge impact zone.When the aperture D=6 mm,the overall heat transfer effect at the leading edge under small impingement aperture is not as good as that in large impingement aperture,while the heat transfer effect in stagnation region is better than that in large impingement aperture.When the aperture is larger than 12 mm,the aperture size has no effect on heat transfer.When the impingement aperture is the same,with the increase of impingement Reynolds number,the airflow velocity near the leading edge wall and in the curved channel of the side wall increases,and the vortex mass in the impact area decreases gradually.The increase of impingement Reynolds number also enhances the heat transfer characteristics of the leading edge impact zone.
作者 侯会文 范顺昌 李昕 彭新 HOU Hui-wen;FAN Shun-chang;LI Xin;PENG Xin(Airforce Military Representative Office in Shenyang,Shenyang 110043,China)
出处 《航空发动机》 北大核心 2020年第1期32-37,共6页 Aeroengine
基金 航空动力基础研究项目资助
关键词 帽罩 冲击换热 数值模拟 冲击孔径 冲击雷诺数 航空发动机 cone impingement heat transfer numerical simulation impingement aperture impingement Reynolds number aeroengine
  • 相关文献

参考文献4

二级参考文献31

  • 1张靖周,李永康,谭晓茗,李立国.阵列射流冲击冷却局部对流换热特性的数值计算与实验研究[J].航空学报,2004,25(4):339-342. 被引量:45
  • 2牛珏,温治,王俊升.圆形喷口紊流冲击射流流动与传热过程数值模拟[J].冶金能源,2007,26(1):16-20. 被引量:9
  • 3陶文锉.数值传热学[M].西安:西安交通大学出版社,1995.
  • 4韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德.燃气轮机传热和冷却技术基础[M].西安:西安交通大学出版社,2005.
  • 5Goldstein R J, Seol WS. Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment [ J ]. International Journal of Heat and Mass Transfer, 1991,34 : 2133 - 2147.
  • 6Goldstein R J, Sobolik KA, Seol WS. Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface [ J ]. ASME Journal of Heat Transfer, 1990,112 : 608 - 611.
  • 7Florschuetz LW, Su CC. Effect of Crossflow Temperature on Heat Transfer within an Array of Impinging Jets [ J ]. ASME Journal of Heat Transfer, 1987,106 : 34 - 41.
  • 8Yizhe Huang, Srinath V. Ekkad, Je - Chin Han. Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets [ J]. Journal of Thermophysics and Heat Transfer,1998,25: 73 - 79.
  • 9Flovschuetz LW, Isoda Y. Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement with Initial Crossflow [ C ]. ASME Paper 82 - GT - 156.
  • 10Goldstein R J, Behbahani AI. Impingement ,of a Circular Jet with and Without Cross Flow [ J ]. International Journal of Heat and Mass Transfer,1982,25 : 1377 - 1382.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部