期刊文献+

基于小波和灰度共生矩阵的带钢表面缺陷识别 被引量:9

Recognition of surface defects on strip based on wavelet and gray level co-occurrence matrix
下载PDF
导出
摘要 提出了一种基于小波变换和灰度共生矩阵的带钢表面缺陷识别方法。采用小波变换分解缺陷图像并提取其低频子带信息。通过在低频子带上构造0°、45°、90°和135°四个方向的灰度共生矩阵,分别计算角二阶矩、熵、对比度和逆差矩4个特征值,共获得16个特征值,并将其输入支持向量机,完成对6类共1800张带钢表面缺陷图像的识别,总体识别精度大于96%。实验结果表明,小波变换与灰度共生矩阵结合能有效描述带钢表面缺陷纹理特征,具有较好的识别效果。 A method for recognition of surface defects on strip based on wavelet transform and gray level co-occurrence matrix(GLCM)are proposed.Wavelet transform is used to decompose defect image and extract their low frequency sub-band.By constructing gray level co-occurrence matrices in four directions of 0°,45°,90°and 135°on low frequency sub-band,four eigenvalues of angular second moment,contrast,entropy and inverse difference moment are calculated respectively,and obtain 16 eigenvalues,which are input into support vector machine(SVM),complete the recognition of surface defects on strip of 1800 images in six categories.The overall recognition accuracy is more than 96%.The experimental results show that the combination of wavelet transform and gray level co-occurrence matrix can effectively describe the texture characteristics of surface defects on strip and has a good recognition effect.
作者 单东日 童灿 乃学尚 高立营 王玉伟 SHAN Dongri;TONG Can;NAI Xueshang;GAO Liying;WANG Yuwei(School of Electronic and Information Engineering,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,CHN;School of Mechanical and Automotive Engineering,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,CHN;School of Information and Control Engineering,Shandong Vocational College of Foreign Affairs Translation,Weihai 264504,CHN)
出处 《制造技术与机床》 北大核心 2020年第2期120-123,共4页 Manufacturing Technology & Machine Tool
基金 山东省自主创新及成果转化专项(2015ZDXX0101G06) 山东省高等学校科技发展计划(J18KA032)
关键词 小波变换 灰度共生矩阵 带钢表面缺陷识别 特征提取 支持向量机 wavelet transform GLCM recognition of surface defects on strip feature extraction SVM
  • 相关文献

参考文献2

二级参考文献18

  • 1林剑,鲍光淑,王润生,王欣.基于模糊密度分解的遥感图像光谱和纹理信息的融合[J].电子学报,2004,32(12):2028-2030. 被引量:10
  • 2柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:59
  • 3罗志勇,刘栋玉,江涛,王斌.新型冷轧带钢表面缺陷在线检测系统[J].华中理工大学学报,1996,24(1):75-78. 被引量:18
  • 4Woods K, Kegelmeyer W P, Bowyer K. Combination of multiple classifiers using local accuracy estimates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(4) :405 - 410.
  • 5Kittler J, Hater M, Drain R P W, et al. On combining classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(3) :226 - 239.
  • 6Kuncheva L. Combining pattern classifiers: methods and algorithms[M]. Hoboken: Wiley, 2004.
  • 7Nearmaour H, Chibani Y. Multiple support vector machines for land cover change detection: an application for mapping urban extensions[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006,61 (2) : 125 - 133.
  • 8Kang H J, Doermarm D. Selection of classifiers for the construction of multiple classifier systems [ C ] // Proceedings of the Eight International Conference on Document Analysis and Recognition. Washington D C: IEEE Computer Society, 2005 : 1194 - 1198.
  • 9Petrakus M, Benediktsson J A. The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion [J ]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39 ( 11 ) : 2539 - 2545.
  • 10Giaeinto G, Roli F. Design of effective neural network ensembles for image classification purposes[J]. Image and Vision Computing, 2001,19(9) : 699 - 707.

共引文献14

同被引文献70

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部