期刊文献+

基于软判决的LDPC码校验向量识别算法 被引量:1

LDPC Code Check Vector Recognition Algorithm Based on Soft Decision
下载PDF
导出
摘要 针对现有LDPC码校验向量识别算法的容错性差和识别率低的问题,提出了一种LDPC码校验向量的迭代识别算法。该算法首先利用信道输出的软信息分析校验关系对数似然比的概率分布特性,找到一种校验向量的预判决方法,大幅度降低了构造校验向量的搜索空间;然后在软判决条件下,利用广义对数似然比对搜索空间中的向量进行判决,得到校验向量;最后,利用多组数据进行迭代,求解搜索空间中的校验向量。实验结果表明,与已有算法相比,本文算法的向量搜索空间大幅度降低,算法的识别率提高约15%,而且算法获得的译码增益提高约2.3 dB。 Aiming at the problems of poor fault tolerance and low recognition rate of the existing LDPC code verification vector recognition algorithms,an iterative recognition algorithm for LDPC code verification vector is proposed.Firstly,the probability distribution of the log-likelihood ratio of the parity relation is analyzed by using the soft information of the channel output,and a pre-decision method of the parity vector is found.The theoretical values of the pre-decision threshold and the size of the data matrix are deduced,which greatly reduces the search space for constructing the parity vector.Then,under the condition of soft decision,using the generalized logarithmic likelihood ratio,the vector in the search space is judged and the check vector is obtained.Finally,multiple sets of data are used to iterate to find the check vectors in the search space.Experimental results show that compared with the existing algorithms,the vector search space of the proposed algorithm is greatly reduced,and the recognition rate is also significantly improved in the low SNR environment.Moreover,the decoding gain of the algorithm is increased by about 2.3 dB.
作者 罗路为 雷迎科 李昕 邵堃 LUO Luwei;LEI Yingke;LI Xin;SHAO Kun(School of Electronic Countermeasure,National University of Defense Technology,Hefei,230037,China)
出处 《数据采集与处理》 CSCD 北大核心 2020年第1期163-172,共10页 Journal of Data Acquisition and Processing
基金 国防科技重点实验室基金(9140C130502140C13068)资助项目 国家自然科学基金(61473237)资助项目 安徽省自然科学基金(1408085MF129)资助项目
关键词 LDPC码 软判决 对数似然比 校验向量 LDPC code soft decision log likelihood ratio check vector
  • 相关文献

参考文献11

二级参考文献118

共引文献138

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部