期刊文献+

基于Huber M-CKF的UUV目标跟踪算法 被引量:2

A Target Tracking Algorithm for UUV Based on Huber M-CKF
下载PDF
导出
摘要 针对无人水下航行器(UUV)目标跟踪精度不高的问题,文中将一种鲁棒性较强的M极大似然估计代价函数引入Huber-容积卡尔曼滤波(H-CKF)并应用于UUV的目标跟踪定位算法中,通过改变归一化新息协方差的方法对CKF矩阵进行线性化求解。建立了UUV运动模型及观测模型,在不同的非高斯噪声干扰下与转换测量卡尔曼滤波、CKF和扩展卡尔曼滤波3种滤波算法进行对比试验,验证了HM-CKF的滤波精度和稳定性优于传统算法。 To improve the target tracking accuracy for unmanned undersea vehicle(UUV),a robust M maximum likeli-hood estimation cost function is introduced into Huber-cubature Kalman filter(H-CKF)for UUV’s target tracking,and the CKF matrix is linearized by changing the normalized innovation covariance.UUV motion model and observation model are established to compare the Huber M-cubature Kalman filter(HM-CKF)with the converted measurement Kal-man filter,the cubature Kalman filter and the extended Kalman filter(EKF)under different non-Gaussian noise interfer-ences,and the results show higher filtering precision and stability of the HM-CKF than the traditonal algorithm in com-plicated undersea acoustic environment.
作者 王斌 温泉 范世东 WANG Bin;WEN Quan;FAN Shi-dong(School of Energy and Power Engineering,Wuhan University of Technology,Wuhan 430063,China;Changjiang Sea-route Planning Design Research Institute,Wuhan 430010,China)
出处 《水下无人系统学报》 北大核心 2020年第1期39-45,共7页 Journal of Unmanned Undersea Systems
基金 中央高校基本科研业务费专项资助项目(195205013)
关键词 无人水下航行器 卡尔曼滤波 M极大似然估计代价函数 unmanned undersea vehicle(UUV) Kalman filter M maximum likelihood estimation cost function
  • 相关文献

参考文献8

二级参考文献73

  • 1叶 斌,徐 毓.强跟踪滤波器与卡尔曼滤波器对目标跟踪的比较[J].空军雷达学院学报,2002,16(2):17-19. 被引量:20
  • 2刘明,龚海刚,毛莺池,陈力军,谢立.高效节能的传感器网络数据收集和聚合协议[J].软件学报,2005,16(12):2106-2116. 被引量:65
  • 3徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9-16. 被引量:123
  • 4仲洪滔,王国鹏,郭士锋.漫湾水电站水垫塘底板水下补强加固工程[J].西北水电,2006(2):25-27. 被引量:2
  • 5Bevly D M, Parkinson B. Cascaded Kalman filters for accurate estimation of multiple biases, dead-reckoning navigation, and full state feedback control of groundvehicles[J]. IEEE Transaction on Control Systems Technology, 2007, 15(2): 199-208.
  • 6Jirawimut R, Ptasinski P, Garaj V. A method for dead reckoning parameter correction in pedestrian navigation system[J]. IEEE Transaction on Instru- mentation and Measurement, 2003, 52(1): 209-215.
  • 7AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al.A survey on sensor networks[J]. IEEE Communications Magazine, 2002,40(8): 102-114.
  • 8HEINZELMAN W R, CHANDRAKASAN A, BALAKRISHNAN H. Energy-efficient communication protocol for wireless mi- crosensor networks[A]. IEEE HICSS[C]. Maui, Hawaii, USA, 2000. 1-10.
  • 9HEINZELMAN W B, CHANDRAKASAN A P, BALAKRISHNAN H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communication, 2002, 1(4): 660-670.
  • 10LINDSEY S, RAGHAVENDRA C S. PEGASIS: power-efficient gathering in sensor information systems[A]. IEEE Aerospace Conference[C]. Montana, USA, 2002. 1125-1130.

共引文献88

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部