期刊文献+

基于高阶累积量和DNN模型的井下信号识别方法 被引量:5

Underground signal recognition method based on higher-order cumulants and DNN model
下载PDF
导出
摘要 针对矿井复杂异构的无线环境,提出一种基于高阶累积量和DNN模型的井下信号识别方法,实现了井下BPSK,QPSK,8PSK,2FSK,4FSK,8FSK,32QAM,64QAM,OFDM等数字信号的自动调制识别。分析得到9种数字信号的高阶累积量理论值,并通过傅里叶变换提高信号辨识度;分析井下小尺度衰落信道对高阶累积量的影响,推导出经过井下衰落信道后信号的高阶累积量计算表达式,根据高阶累积量理论值构造特征参数并训练DNN模型,实现信号识别。仿真分析结果表明,该方法在矿井Nakagami-m衰落信道下有出色的调制识别性能,信噪比为-5 dB时平均正确识别率为89.2%以上,信噪比为5 dB以上时平均正确识别率为100%。该方法为在特殊复杂环境下的信号识别检测提供了新思路。 In view of complex and heterogeneous wireless environment of mine,an underground signal recognition method based on higher-order cumulants and DNN model was proposed to realize automatic modulation recognition of underground digital signals of BPSK,QPSK,8PSK,2FSK,4FSK,8FSK,32QAM,64QAM,OFDM.Theoretical values of high-order cumulants of the 9 kinds of digital signals were obtained by analysis,and the signal identification was improved by Fourier transform.The influence of underground small-scale fading channels on high-order cumulants were analyzed,high-order cumulants calculation expression of the signal after passing through the underground channel was derived,and signal recognition was realized using characteristic parameters constructed according high-order cumulants to train DNN model.The simulation analysis results show that the method has excellent modulation recognition performance in mine Nakagami-m fading channel,average correct recognition rate is more than 89.2%when the signal-to-noise ratio is-5 dB,and the average correct recognition rate is 100%when the signal-to-noise ratio is 5 dB or more.The method provides a new idea for signal recognition and detection in special and complex environments.
作者 王安义 李立 WANG Anyi;LI Li(College of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
出处 《工矿自动化》 北大核心 2020年第2期82-87,共6页 Journal Of Mine Automation
基金 国家重点产业创新链项目(2019ZDLSF07-06) 国家自然科学基金青年科学基金项目(61801372)
关键词 矿井通信 井下信号识别 NAKAGAMI-M衰落信道 高阶累积量 深度神经网络 DNN模型 mine communication underground signal recognition Nakagami-m fading channel higher-order cumulant deep neural network DNN model
  • 相关文献

参考文献3

二级参考文献33

  • 1张嵩,王晓东,芮国胜,卜智勇.基于Simulink~的复合衰落信道仿真与分析[J].海军航空工程学院学报,2007,22(3):340-344. 被引量:2
  • 2吕新正,魏平,肖先赐.利用高阶累积量实现数字调制信号的自动识别[J].电子对抗技术,2004,19(6):3-6. 被引量:42
  • 3VOLOS H I, ANDERSON C R, HEADLEY W C, et al. Preliminary UWB propagation measurements in an underground limestone mine[C]//IEEE GLOBECOM " 07. Washington,D. C. , USA,2007:3770-3774.
  • 4CHEHRI A, FORTIER P, TARDIF P M. Measurements and modeling of Line-of-Sight UWB channel in underground mines[C]//IEEE GLOBECOM'06. San Francisco, CA, USA,11, 2006:1-5.
  • 5CHEHRI A, FORTIER P, TARDIF P M. Frequency domain analysis of UWB channel propagation in underground mines [C]//IEEE 64th Vehicular Technology Conference (VTC "06) , Montreal, Canada, 9,2006 : 1- 5.
  • 6CHEHRI A, FORTIER P, ANISS H, et al. UWB spatial fading and small scale characterization in underground mines[C]// Biennial Symposium on Communications, Kingston,Ontario, Canada: IEEE, 2006 : 213-218.
  • 7TURIN G L, CLAPP F D,JOHNSTON T L,et al. A statistical model of urban multipath propagation [J]. IEEE Trans. Vehicular Technology, 1972,21(1) :1-9.
  • 8TJHUNG T T, CHAI C C. Fade statistics in nakagami-lognormal channels [J]. IEEE Trans. Commun, 1999,47 (12) : 1769-1772.
  • 9BEANLIEU N C, CHENG C. Efficient Nakagami-m fading channel simulation[J]. IEEE Transcations on Vehicular Technology, 2005,54 (2) : 413-424.
  • 10E.E. Azzouz, AK. Nandi. Automatic identification of digital modulation types [ J]. Signal Processing, 1995, 47 ( 1 ) :55-69.

共引文献32

同被引文献41

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部