期刊文献+

结合变异机制和量子PSO的关联规则挖掘算法 被引量:6

An association rule mining algorithm based on mutation mechanism and QPSO
下载PDF
导出
摘要 针对数据集中的关联规则挖掘问题,提出一种基于改进量子粒子群优化(improved quantum particle swarm optimization,IQPSO)算法的关联规则挖掘方法。首先,将数据实例以量子比特形式表示,构建一个基于量子进化算法(quantum evolutionary algorithm,QEA)的关联规则挖掘基础框架。然后,在该基础框架上,采用新的量子角度更新公式,即使用QPSO代替QEA实现关联规则挖掘。最后,为了进一步提高QPSO算法的收敛性能,融入变异机制和动态惯性权重对其进行改进,加快其收敛速度和跳出局部最优的能力。在UCI和课程成绩数据集上的实验结果表明,提出的算法能够快速且有效地挖掘出关联规则,相比其他几种算法,挖掘到的关联规则价值更高。 In view of the existing problems of the association rule mining in big data set,an association rule mining method based on improved quantum particle swarm optimization(IQPSO)algorithm was proposed in this paper.Firstly,the data instances were represented in the form of quantum bits,and a basic framework of association rule mining based on quantum evolutionary algorithm(QEA)was constructed.Then,QPSO was used instead of QEA to construct a new quantum angle updating formula to realize association rule mining.Finally,mutation mechanism and dynamic inertia weight were integrated to improve QPSO so as to accelerate convergence speed and the ability to jump out of local optimum.The experimental results on UCI and student test score data sets show that the proposed method can mine the association rules quickly and effectively and the fitness value of association rules mined by this algorithm is higher than those mined by other algorithms.
作者 吴嵘 张姣玲 刘小兰 WU Rong;ZHANG Jiaoling;LIU Xiaolan(School of Information and Automation,Guangdong Polytechnic of Science and Trade,Guangzhou,Guangdong 510640,China;School of Mathematics and Systems Science,Guangdong Polytechnic Normal University,Guangzhou,Guangdong 510665,China;School of Mathematics,South China University of Technology,Guangzhou,Guangdong 510641,China)
出处 《山东科技大学学报(自然科学版)》 CAS 北大核心 2020年第2期95-104,共10页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(11801097)
关键词 关联规则挖掘 量子粒子群优化 变异机制 动态惯性权重 量子进化算法 association rule mining quantum-behaved particle swarm optimization mutation mechanism dynamic inertia weight quantum evolutionary algorithm
  • 相关文献

参考文献6

二级参考文献35

  • 1杨光,刘冠军,李金国,杨国峰.基于故障检测和可靠性约束的传感器布局优化[J].电子学报,2006,34(2):348-351. 被引量:20
  • 2SINGLA S and MALIK A. Survey on various improved Apriori algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2014, 3(11): 8528-8531.
  • 3MINAL G I and SURYAVANSHI N Y. Association rule mining using improved Apriori algorithm[J]. International Journal of Computer Applications, 2015, 112(4): 37-42.
  • 4RAJESWARI K. Improved Apriori algorithm A comparative study using different objective measures[J]. International Journal of Computer Science and Information Technologies, 2015, 6(3): 3185-3191.
  • 5ACHAR A, LAXMAN S, and SASTRY P S. A unified view of the Apriori-based algorithms for frequent episode discovery[J]. Knowledge & Information Systems, 2012, 31(2): 223-250.
  • 6AGRAWAL R and SRIKANT R. Fast algorithms for mining association rules[C]. VLDB’94 Proceedings of the 20th International Conference on Very Large Data Bases, San Francisco, CA, USA, 1994: 487- 499.
  • 7YANG Z, TANG W, SHINTEMIROV A, et al. Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39(6): 597-610.
  • 8ZHANG F, ZHANG Y, and BAKOS J D. Gpapriori: Gpu-accelerated frequent itemset mining[C]. 2011 IEEE International Conference on Cluster Computing, Austin, TX, USA, 2011: 590-594.
  • 9ANGELINE M D and JAMES S P. Association rule generation using Apriori mend algorithm for student’s placement[J]. International Journal of Emerging Sciences, 2012, 2(1): 78-86.
  • 10LI N, ZENG L, HE Q, et al. Parallel implementation of Apriori algorithm based on MapReduce[C]. 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel Distributed Computing (SNPD), Kyoto, Japan, 2012: 236-241.

共引文献102

同被引文献86

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部