期刊文献+

一种基于时段特征的匹配算法在智能电表用电预测中的应用研究 被引量:4

APPLICATION OF MATCHING ALGORITHM BASED ON TEMPORAL FEATURE IN POWER CONSUMPTION FORECAST OF SMART METER
下载PDF
导出
摘要 用电需求预测问题对智能电网的稳定运行和用户体验的提升有着非常重要的影响。现有的工作大多是针对长、中期用电需求进行预测,而对短期内细粒度的用电需求的预测效果不佳。针对这一问题,基于特征匹配的思想,提出一种细粒度的用电需求预测算法。基于智能电表中记录的居民用电数据,提取每个用户的用电特征,并在智能电表中记录的实时用电数据上进行特征匹配,利用匹配到的特征进行用电量的预测。实验证明,该方法在细粒度的用电数据上取得了良好的性能。 Prediction of power demand is very important for the stability of the smart grid and the user s experience.Most power demand forecasting algorithms are aimed at the long and medium term power demand forecast.While the prediction effect of fine-grained electricity demand in the short term is not good.In order to solve this problem,this paper proposes a fine-grained electricity demand forecasting algorithm based on the idea of feature matching.It extracted the power consumption characteristics of each user based on the residential power data recorded on smart meters,and matched the characteristics on the real-time power consumption data.And matched characteristics were used to predict the power consumption.Experimental results show that the proposed method achieves the good performance on fine-grained power data.
作者 倪家明 陈博 董阳 李旭 Ni Jiaming;Chen Bo;Dong Yang;Li Xu(Information Communication Company,State Grid Tianjin Electric Power Company,Tianjin 300010,China)
出处 《计算机应用与软件》 北大核心 2020年第3期82-88,共7页 Computer Applications and Software
基金 天津市科技计划项目(18ZXZNGX00310) 国网天津市电力公司科技项目(kj18-1-17)。
关键词 用电需求预测 细粒度 特征匹配 智能电表 Power demand forecasting Fine-grained Feature matching Smart meter
  • 相关文献

参考文献8

二级参考文献52

  • 1张柏涛,周伟国.新时期上海市燃气负荷规律的探讨[J].上海煤气,2005(1):9-11. 被引量:1
  • 2张亚军,刘志刚,张大波.一种基于多神经网络的组合负荷预测模型[J].电网技术,2006,30(21):21-25. 被引量:19
  • 3张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274. 被引量:36
  • 4Wu Q. The forecasting model based on wavelet v-support vector ma- chine [ J ]. Expert Systems with Applications, 2009,36 ( 4 ) : 7604 -7610.
  • 5Lamb P, Logue D. Implementation of a Gas Load Forecaster At Williams Gas Pipeline [ EB/OL ]. 2001. http ://www. energy - solutions, cn/ pdf/glf_impliment, pdf.
  • 6Thomaidis N S, Dounias G D. On detecting the optimal structure of a neural network under strong statistical features in errors[ J]. Journal of Time Series Analysis ,2011,32( 3 ) :204- 222.
  • 7Compo C,T a G P. A Practical Guide to Wavelet Analysis[ OL]. ht- tp ://paos. colorado, edu/research/wavelets/.
  • 8Zhang G P, Qi M. Neural network forecasting for seasonal and trend time series [ J ]. European Journal of Operational Research, 2005,160 (2) :501 -514.
  • 9Tseng F M, Yu H C, Tzeng G H. Combining neural network model with seasonal time series ARIMA model [ J ]. Technological Forecasting and Social Change ,2002,69( 1 ) :71 - 87.
  • 10Hill T, M O C, Remus W. Neural network models for time series fore- casts [ J ]. Manage. Sci, 1996,42 (7) : 1082 - 1092.

共引文献89

同被引文献54

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部