期刊文献+

基于K-means聚类方法的物流多配送中心选址优化研究 被引量:26

Study on Optimization of Logistics Multiple Distribution Center Location Based on K-means Clustering Method
原文传递
导出
摘要 针对城市物流多配送中心选址过程中因素选取和方法融合研究方面存在的不足,提出先对备选配送中心进行聚类分析而后在各聚类单元内进行选址排序的思想方法。首先,建立物流多配送中心选址的评价指标体系,将语言变量值与梯形直觉模糊数相结合并应用模糊集成方法进行计算,进而得到各配送中心在准则指标下的集成综合评价值;其次,根据隶属度函数,将集成后的综合评价值拆分成3个分属性值,并将分属性值作为聚类过程的输入。然后,应用K-means方法计算多配送中心的聚类单元和确定初始聚类中心,并选取聚类单元均值作为新的聚类中心进行优化迭代计算,直到确定聚类中心位置,进而得到最终聚类结果。最后,应用TOPSIS方法计算各类中选址位置的评价值,排序选出配送中心选址位置。实例验证表明,所提方法得到的选址结果合理且优于其他选址方法,并可应用到多级物流配送网络的选址优化问题研究中。 In view of the insufficiency of factors selection and method fusion research in the process of urban logistics multiple distribution center location selection,a method that to cluster the candidate distribution centers at first and then to locate and sort them in each cluster unit is presented.First,the indicator evaluation system of logistics multiple distribution center is established,the comprehensive evaluation value of each distribution center under the criteria is obtained by combining the linguistic variable value with the trapezoidal intuitionistic fuzzy number and fuzzy integration method.Second,the integrated comprehensive evaluation value is divided into 3 sub-attribute values according to the membership function,and the sub-attribute value is used as the input of the clustering process.Then,the clustering units of multiple distribution center is calculated and the initial clustering centers are determined by k-means method,and the mean value of each clustering unit is selected as the new clustering center for optimization iterative calculation,until the locations of the clustering centers are determined,and the final clustering result is obtained.Finally,the evaluation values of the location of all kinds of distribution centers are calculated by TOPSIS method,and the distribution center location is selected by sorting.A case study shows that the location result obtained by this method is reasonable and better than those obtained by other methods,which can be applied to the study of multi-level logistics distribution network location optimization.
作者 王勇 黄思奇 刘永 许茂增 WANG Yong;HUANG Si-qi;LIU Yong;XU Mao-zeng(School of Economics and Management,Chongqing Jiaotong University,Chongqing 400074,China;School of Economics and Management,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China)
出处 《公路交通科技》 CAS CSCD 北大核心 2020年第1期141-148,共8页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金项目(71871035,71402011,71471024) 教育部人文社科项目(18YJC630189) 中国博士后基金项目(2017T100692,2016M600735) 重庆市社会科学规划项目(2019YBGL054) 重庆市教委科学技术研究项目(KJQN201800723) 重庆市留创计划创新项目(cx2018111) 四川省博士后科研项目(2017-22)
关键词 运输经济 多配送中心选址 TOPSIS方法 K-MEANS聚类 梯形直觉模糊数 transport economics multiple distribution center location TOPSIS method k-means clustering trapezoid intuitionistic fuzzy number
  • 相关文献

参考文献14

二级参考文献128

共引文献255

同被引文献238

引证文献26

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部