摘要
随着常规油气资源的大量消耗,低渗透致密油藏逐渐成为开发的主要资源。由于致密储层主要发育大量的纳米级孔隙与裂缝,当流体通过时,流动规律偏离达西定律,渗流曲线不再是一条通过原点的直线。对于渗流过程中各因素之间的相互作用及对渗流规律的影响说法不一,至今没有一个满意的模型。为了正确认识致密油藏储层的非线性渗流规律,该文以边界层理论为基础,提出了低渗透致密油藏一种新的非线性渗流模型。通过流体在微纳米管中的流动实验分析,润湿性液体的边界黏附层厚度与驱替压力梯度呈指数关系,对流量模型进行了简化处理;进而利用毛管束模型得到了致密多孔介质中液体的渗流模型,并用天然致密岩心进行单相水流动实验给予验证。研究结果表明,所得非线性渗流模型是有效的,能够用来描述致密油藏的非线性特征。
With the increasing consumption of conventional oil and gas resources in China,the low-permeability tight reservoirs are gradually put into exploitation and utilization and have become the main target of development.The flow law no longer conforms to Darcy’s law when it comes to low permeability due to a large number of nano-scale pores and cracks,and the percolation curve is no longer a straight line passing through the origin.There is no agreement on the interaction between various factors in the percolation process and influence of the percolation law.In order to correctly understand the law of tight reservoirs,a new nonlinear percolation model was proposed based on the boundary layer theory.Through the experimental analysis of the fluid in the micro-and nano-tubes,the thickness of the boundary adhesion layer of the wetting liquid is exponentially related to the displacement pressure gradient,and the flow model is simplified.Then the model in dense porous media was obtained by capillary bundle model.Finally,the flow model wasverified by single-phase water flooding experiment in natural dense cores.The results demonstrate that the model is effective and can be applied to describe the nonlinear characteristics of tight reservoirs.
作者
宋付权
薄利文
高豪泽
戴涛
孙业恒
SONG Fu-quan;BO Li-wen;GAO Hao-ze;DAI Tao;SUN Ye-heng(School of Petrochemical and Energy Engineering,Zhejiang Ocean University,Zhoushan 316022,China;Exploration and development scientific research institute of shengli oilfield branch of Sinopec,Dongying 257015,China)
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2019年第6期772-778,共7页
Chinese Journal of Hydrodynamics
基金
国家重大专项(2017ZX05072005)
国家自然科学基金(11602221,11472246)~~
关键词
致密油藏
非达西渗流
微纳米流动
边界黏附层
非线性渗流模型
tight reservoirs
non-Darcy flow
micro-and nano-flow
boundary adhesion layer
nonlinear percolation model