期刊文献+

压缩感知实现快速超分辨荧光显微成像 被引量:3

Fast super-resolution fluorescence microscopy by compressed sensing
下载PDF
导出
摘要 为了发展能够同时兼顾超分辨、快速成像和视场的荧光显微镜,以促进其在活细胞或微观动态过程成像的应用,将压缩感知应用到超分辨荧光显微镜中,利用投影梯度稀疏重构算法对单帧荧光宽场图像重构,并进行了理论分析、仿真和实验验证。结果表明,该方法能够突破光学衍射极限,成像分辨率达到180nm,相比衍射极限提高1.8倍。此结果说明压缩感知能够实现单帧宽场超分辨荧光显微成像,相比现有的方法在成像速度上有巨大的提升。 In order to develop fluorescent microscope that can simultaneously take into account super-resolution,fast imaging and field of view,and promote its application in imaging of living cells or micro-dynamic processes,the compressed sensing was applied to super-resolution fluorescence microscopy.The algorithm of gradient projection for sparse reconstruction was used to reconstruct single fluorescence wide field image.Theoretical analysis,simulation and experimental verification were carried out.The results show that,this method can break through the optical diffraction limit.The imaging resolution is 180nm.Compared with the diffraction limit,it is 1.8 times higher.Compressed sensing can realize single-frame wide-field super-resolution fluorescence microscopy imaging.Compared with the existing methods,the imaging speed has been greatly improved.
作者 李文文 刘书朋 王中阳 LI Wenwen;LIU Shupeng;WANG Zhongyang(Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai Institute for Advanced Communication&Data Science,Shanghai University,Shanghai 200444,China;Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China)
出处 《激光技术》 CAS CSCD 北大核心 2020年第2期196-201,共6页 Laser Technology
基金 国家重点研发计划资助项目(2016YFC0100603)。
关键词 显微 超分辨 压缩感知 投影梯度稀疏重构算法 microscopy super-resolution compressed sensing gradient projection for sparse reconstruction
  • 相关文献

参考文献4

二级参考文献47

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2Ritman E L. Vision 20/20: Increased image resolution versus reduced radiation exposure [J]. Medical Physics, 2008, 35(6):2502-2510.
  • 3Langheinrich A, Kampschulte M, Crossmann C,et al. Role of computed tomography voxel size in detection and discrimination of calcium and iron deposits in atherosclerotic human coronary artery specimens [J]. Journal of Computer Assisted Tomography, 2009, 33(4): 517-522.
  • 4Flohr T G, Stierstorfer K, Sü? C, et al. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT [J]. Medical Physics, 2007, 34(5):1712-1723.
  • 5Park S C, Park M K, Kang M G. Super-resolution image reconstruction: A technical overview [J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
  • 6Liu X, Yua L F, Armando M, et al. Super resolution technique for clinical multislice CT// Proceedings of SPIE Medical Imaging 2010: Physics of Medical Imaging, San Diego. United States: SPIE press, 2010, 7622: 76221Q1-7.
  • 7Van G G, Batenburg J, Casteele E, et al. A discrete tomography approach for superresolution micro-CT images// IEEE International Symposium on Biomedical Imaging. Rotterdam, Holland: IEEE press, 2010, 816-819.
  • 8Yang J C, Wright J, Huang T, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 9Zhu X, Bamler R. Super-resolution for 4-D SAR tomography via compressive sensing// Proceedings of the 8th European Conference on Synthetic Aperture Radar. Aachen, Germany: EUSAR press, 2010, 273-276.
  • 10Zhu X X, Bamler R. Tomographic SAR inversion by L1-norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839-3846.

共引文献112

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部