期刊文献+

一种降低光纤通信系统误码率的方法 被引量:1

Method for Reducing BER of Optical Fiber Communication System
下载PDF
导出
摘要 针对光纤通信系统在传输过程中易受光纤线路、传输设备等因素干扰的问题,提出了一种利用基于卷积神经网络的编码器-解码器来降低接收端信号误码率的方法,从而提升光纤通信系统的抗干扰能力。具体地,利用伪随机二进制序列(Pseudo-Random Binary Sequence)码作为标签信号,将受干扰后的信号作为输入信号,训练出具有恢复受扰信号能力的卷积编码器-解码器。实验结果表明,卷积编码器-解码器能降低受一定程度干扰的信号误码率,具备提升光纤通信系统抗干扰性能的能力。 Aiming at the problem that the optical fiber communication system is easy to be interfered by the factors such as optical fiber line and transmission equipment in the transmission process,a method is proposed to reduce the BER(Bit Error Rate)of the received signal by using the encoder-decoder based on CNN(Convolutional Neural Network),so as to improve the anti-interference ability of the optical fiber communication system.Specifically,PRBS(Pseudo-Random Binary Sequence)code is used as the label signal and the disturbed signal as the input signal to train the CNN encoder-decoder with the ability to recover the disturbed signal.The experimental results indicate that the CNN encoder-decoder can reduce the BER of the signal disturbed to some extent,and thus has the ability to improve the anti-interference performance of the optical fiber communication system.
作者 别芳宇 张建国 高勇 BIE Fang-yu;ZHANG Jian-guo;GAO Yong(College of Electronics and Information Engineering,Sichuan University,Chengdu Sichuan 610065,China;Chengdu Superxon Communication Technology Co.,Ltd.,Chengdu Sichuan 610041,China)
出处 《通信技术》 2020年第3期551-556,共6页 Communications Technology
关键词 光纤通信系统 卷积神经网络 编码器-解码器 抗干扰 误码率 optical fiber communication system CNN(convolutional neural network) encoder-decoder anti-interference BER(bit error rate)
  • 相关文献

参考文献6

二级参考文献49

  • 1Mathur,Ziari M. Over 1W Fiber - Coupled Semiconducter Source for Pumping of Raman Fiber Amplifiers and Erbium - Doped Fiber Amplifiers [ J ].Electronics Letters,2000,36(5) :410 ~ 411
  • 2Tong L,Xu G,Kailath T. Blind identification and equalization based on second-order statistics:a time domain approach[J].{H}IEEE Transactions on Information Theory,1994.340-349.
  • 3Xu G,Liu H,Tong L. A least squares approach to blind channel identification[J].{H}IEEE Transactions on Signal Processing,1995,(12):2982-2993.
  • 4Aissa-El-Bey A,Grebici M,Abed-Meraim K. Blind system identification using cross-relation methods:further results and developments[A].2003.649-652.
  • 5Hua Y,Wax M. Strict identifiability of multiple FIR channels driven by an unknown arbitrary sequence[J].{H}IEEE Transactions on Signal Processing,2006,(03):756-759.
  • 6Wang S,Manton J,Devlin J. An FFT-based method for bind identification of FIR SIMO channels[J].{H}IEEE Signal Processing Letters,2009,(07):437-440.
  • 7Karakutuk S,Tuncer T E. Channel matrix recursion for blind effective channel order estimation[J].{H}IEEE Transactions on Signal Processing,2011,(04):1642-1653.
  • 8Shi M,Yi Q M. An efficient blind SIMO channel identification algorithm via eigenvalue decomposition[J].{H}LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES,2010,(01):41-47.
  • 9He Z S,Cichocki A. Robust channel identification using FOCUSS method[J].Advance in Neural Network Research and Application,2011,(01):471-477.
  • 10Schimid D,Enzner G. Cross-relation-based blind SIMO identifiability in the presence of near-common zeros and noise[J].{H}IEEE Transactions on Signal Processing,2012,(01):60-72.

共引文献224

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部