摘要
In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.
In this paper, ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated. The experimental results show that the gas sensor has good repeatability, high response rate, short response, and recovery time at room temperature(25℃). The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%, with a response time and recovery time are 0.3 s and 0.7 s respectively. As a contrast, the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate. Therefore, ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics, which provides a feasible method of developing the high performance ZnO-based gas sensor.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.61574026 and 11405017)
the Liaoning Provincial Natural Science Foundation,China(Grant No.201602453)