期刊文献+

固溶后冷却方式对Inconel X-750合金组织和性能的影响 被引量:5

Effect of cooling mode on microstructure and properties of solution treated Inconel X-750 alloy
原文传递
导出
摘要 采用SEM、TEM、EDAX和相分析等分析手段,研究Inconel X-750合金固溶后不同冷却方式下组织和性能的变化。结果显示:水冷和油冷抑制合金中γ’相的析出,时效后均析出球形的γ’相。炉冷后合金中析出一次立方体形γ’相和二次球形γ’相,时效后再次析出球形γ’相;水冷和油冷后晶界上无碳化物析出,时效后晶界上均析出细小针状M23C6。炉冷后合金晶界上析出块状M23C6,时效后碳化物尺寸略微长大,形状基本不变;炉冷+时效后合金的强度最高,水冷+时效后合金的冲击性能最好。 SEM,TEM,EDAX and phase analysis were used to study the changes of microstructure and properties of Inconel X-750 alloy after solid solution with different cooling mode. The results show that the water cooling and oil cooling inhibit γ’ precipitation,however spherical γ’ is precipitated after aging. After the furnace cooling,a cubic γ’ and a secondary spherical γ’ are precipitated in the alloy,and the spherical γ’ is precipitated again after aging. There is no carbide precipitation on the grain boundary after water cooling and oil cooling,fine needle-like M23C6 precipitates on the grain boundary after aging. The block M23C6 precipitates on the grain boundary of the alloy after furnace cooling. The carbide size grows slightly and the shape is basically unchanged after aging;the strength of the alloy is the highest after furnace cooling + aging,and the impact property of the alloy is the best after water cooling + aging.
作者 张亚辉 王立民 胡日 Zhang Yahui;Wang Limin;Hu Ri(Special Steel Research Institute,Central Iron and Steel Research Institute,Beijing 100081,China)
出处 《金属热处理》 CAS CSCD 北大核心 2020年第1期105-111,共7页 Heat Treatment of Metals
关键词 镍基高温合金 固溶冷却方式 γ’相 碳化物 性能 Ni-based superalloy solution cooling mode γ’ phase carbide properties
  • 相关文献

参考文献3

二级参考文献28

  • 1[1]Alloy Digest, Ni-350[Z]. Orange, NJ: Alloy Digest, Inc, 1987. 7.
  • 2[2]Sims S T, Stoloff N S, Hagel W C. Superalloys Ⅱ[M]. New York: A Wiley-Interscience Publication, 1987. 590.
  • 3[3]Zhao J C, Ravikumar V, Beltran A M. Phase precipitation and phase stability in Nimonic 263 [J]. Metallurgical and Materials Transactions A, 2001, 32A: 1271-1282.
  • 4[4]Blum R. Preliminary considerations for the design of a pulverized coal fired steam boiler with ultra super advanced steam parameters[R]. Advanced (700℃) PF Power Plant, EC Contract No.SF/1001/97/DK(1997).
  • 5[5]Smith G D, Patel S J, Farr N C, et al. The corrosion resistance of nickel-containing alloys in coal-fired boiler environments [A]. Corrosion 99 [C]. Houston: NACE International, 1999. 12.
  • 6[6]Smith G D, Sizek H W. Introduction of an advanced superheater alloy for coal-fired boilers [A]. Corrosion 2000 [C]. Houston: NACE International, 2000: 00256.1.
  • 7[7]Castello P, Guttmann V, Farr N, et al. Laboratory-simulated fuel-ash corrosion of superheater tubes in coal-fired ultra-supercritical-boilers [J]. Materials and Corrosion, 2000, 51: 786-790.
  • 8[8]Xie X, Liu Z, Zhao S, et al. Thermal stability of high temperature corrosion resistant nickel-base superalloy [A]. Hanada S, Zhong Z, Nam S W, et al. The fourth Pacific Rim International Conference on Advanced Materials and Processing (PRICM4) [C]. Sendai: The Japan Institute of Metals, 2001. 2747-2750.
  • 9[10]Sundman B, Jansson B, Anderson J O. The thermo-calc databank system [J]. CALPHAD, 1985, 9(2): 153-190.
  • 10Nembach E.Particle Strengthening for Metals and Alloys.New York:John Wiley & Sons,1997:230.

共引文献44

同被引文献32

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部