期刊文献+

微电网动态调度模型 被引量:6

Microgrid Dynamic Scheduling Model
原文传递
导出
摘要 微电网系统中可再生能源出力和建筑负荷均具有随机特性,使得传统方法难以描述其动态特征,随着可再生能源的大量接入,微电网系统结构也愈趋复杂化,本文基于Modelica非因果建模语言对含随机参数的复杂系统进行动态描述,实现对可再生能源发电、储能元件和可控负荷的耦合建模,并验证其准确性。运用动态模拟结合多种群遗传算法对典型微电网系统进行24 h运行策略调整,结果验证了该模型与动态调度方法的有效性。 The output of renewable energy and building load in microgrid system are stochastic,which makes it difficult for traditional methods to describe dynamic characteristics of the system.With the large number of renewable energy access,the structure of microgrid system becomes more complex.Based on Modelica non-causal modeling language,this paper describes the dynamic behavior of complex system with stochastic parameters.The coupling model of renewable energy generation,energy storage components and controllable load is realized,and its accuracy is verified as well.Dynamic simulation and multi-population genetic algorithm are used to adjust the 24-hour operation strategy for a typical microgrid system.The results show that the model and dynamic dispatching method are effective.
作者 莫裘 邓嘉欣 刘方 MO Qiu;DENG Jia-Xin;LIU Fang(College of Energy and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2020年第2期293-298,共6页 Journal of Engineering Thermophysics
基金 上海市自然科学基金(No.19ZR1420400,No.15ZR1417700) 上海高校特聘教授(东方学者)岗位计划(No.2013-66) 上海市教育发展基金会和上海市教育委员会“曙光计划”(No.14SG50)
关键词 可再生能源 MODELICA语言 遗传算法 动态调度 renewable energy modelica language genetic algorithm dynamic scheduling
  • 相关文献

参考文献2

二级参考文献23

  • 1Eltawil M A,Zhao Z M. Grid-connected photovoltaic power systems:Technical and potential problems-a review[J].{H}Renewable & Sustainable Energy Reviews,2010,(01):112-129.
  • 2Choi S S,Tseng K J,Vilathgamuwa D M. Energy storage systems in distributed generation schemes[A].Pittsburgh,USA:IEEE,2008.1-8.
  • 3Denholm P,Margolis R M. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies[J].{H}ENERGY POLICY,2007,(09):4424-4433.
  • 4Ton D,Peek G H,Hanley C J. Solar energy grid integration systems-energy storage (SEGIS-ES)[R].California:Sandia National Laboratory,2008.
  • 5Meibom P,Barth R,Hasche B. Stochastic optimization model to study the operational impacts of high wind penetrations in ireland[J].{H}IEEE Transactions on Power Systems,2011,(03):1367-1379.
  • 6Dennis B C,Byron Winn C. Optimal dispatch strategy in remote hybrid power systems[J].{H}SOLAR ENERGY,.
  • 7Lilienthal P,Lambert T,Gilman P. HOMER V.2.68beta[EB/OL].http://www.Homerenergy.com/,2011.
  • 8Xiaoping L,Ming D,Jianghong H. Dynamic economic dispatch for microgrids including battery energy storage[A].Hefei,China:IEEE,2010.914-917.
  • 9Babu G S S,Das D B,Patvardhan C. Dynamic economic dispatch solution using an enhanced real-quantum evolutionary algorithm[A].New Delhi,India:IEEE,2008.1-6.
  • 10Duffie J A,Beckman W A. Solar engineering of thermal processes 2nd edition[M].{H}New York:Wiley,1991.254-312.

共引文献134

同被引文献70

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部