摘要
在限制性三体问题中,路径搜索修正法是一种基于平动点周期轨道垂直穿越Poincare截面的几何对称性计算平面及空间平动点周期轨道近似初值的方法.采用路径搜索修正法的一种简化形式,在圆形限制性三体模型中,对地月系中几种典型的平面及空间周期轨道近似初值进行了计算.结果表明,该简化方法得到的周期轨道近似初值不唯一,由近似初值经微分修正得到的精确结果中通常同时存在Halo轨道和大幅值逆行轨道(DRO).进一步分析表明,在某些临界初值下,精确结果中Halo轨道将消失,同时可能出现平面Lyapunov轨道及Vertical轨道.上述计算中,搜索初值与结果中轨道类型的对应关系值得进一步研究.
In the restricted three-body problem,the path searching and correcting method is often used to calculate the approximate initial value of planar and three-dimensional periodic orbit.In this paper,in view of the Circular Restricted Three-Body Problem(CRTBP),a simplified mode of this method is applied to calculate the approximate initial value of several ordinary kinds of periodic orbit.The results show that the approximate initial value obtained by the simplified method is not unique,and the precise initial values derived from the unique values above using differential correction method often include both Halo and DRO(Distant Retrograde Orbit) orbits.Moreover,under certain boundary initial values,Halo orbit will disappear from the results and the planar Lyapunov orbit or Vertical orbit will appears.The relationship between these initial values using in this method and the certain kinds of orbit needs further study.
作者
熊瑶
袁洪
杨新
张扬
甘庆波
XIONG Yao;YUAN Hong;YANG Xin;ZHANG Yang;GAN Qingbo(Academy of Opto-Electronics,Chinese Academy of Sciences,Beijing 100094;University of Chinese Academy of Sciences,Beijing 100049;Qingdao Academy for Opto-Electronics Engineering,Qingdao 266000;The Second Academy,China Aerospace Science and Industry Corp,Beijing 100854)
出处
《空间科学学报》
CAS
CSCD
北大核心
2020年第1期102-108,共7页
Chinese Journal of Space Science
基金
青岛创新领军人才项目资助(16-8-3-5-zhc)
关键词
圆形限制性三体问题
路径搜索修正法
平动点周期轨道
HALO轨道
大幅值逆行轨道
Circular restricted three-body problem
Path searching and correcting method
Libration Periodic orbit
Halo orbit
Distant retrograde orbit