摘要
针对粒子群优化(particle swarm optimization,PSO)算法无法在提高收敛速度的同时避免早熟的缺陷,提出基于正态分布衰减惯性权重粒子群优化(normal distribution decay inertial weight particle swarm optimization,NDPSO)算法.以正态分布曲线作为惯性权重的衰减策略曲线,通过引入控制因子对粒子的位置进行改善,使得NDPSO算法能很好的在优化过程中平衡全局搜索和局部搜索能力.使用8个标准函数测试分别对粒子群优化(particle swarm optimization,PSO)、线性权重衰减粒子群优化(linear decay inertial weight particle swarm optimization,LDWPSO)、指数权重衰减粒子群优化(exponential decay weight particle swarm optimization,EXPPSO)、收缩因子粒子群优化(constriction factor particle swarm optimization,CFPSO)、高斯分布衰减惯性权重粒子群优化(Gaussian decay inertial weight particle swarm optimization,GDIWPSO)、基于动态加速度系数的粒子群优化(particle swarm optimization based on dynamic acceleration coefficients,PSO-DAC)、性权重自适应粒子群优化(inertia weight adaptive particle swarm optimization,简称PSO-LH)算法以及NDPSO算法进行仿真,分析他们的收敛速度和收敛精度.结果表明,NDPSO算法不管在单峰函数问题还是多峰函数问题上,总体性能都优于其他算法.
To avoid early maturity stagnation while increasing convergence speed of particle swarm optimization(PSO)algorithm,a normal distribution decay inertial weight particle swarm optimization(NDPSO)algorithm is proposed based on the inertia weight of which the decay strategy curve is normal distribution curve.By introducing the control factor to improve the position of the particle,the NDPSO algorithm can balance the global search and local search ability in the optimization process.The PSO,linear decay inertial weight particle swarm optimization(LDWPSO),exponential decay weight particle swarm optimization(EXPPSO),constriction factor particle swarm optimization(CFPSO),Gaussian decay inertial weight particle swarm optimization(GDIWPSO),particle swarm optimization based on dynamic acceleration coefficients(PSO-DAC),inertia weight adaptive particle swarm optimization(PSO-LH)and NDPSO algorithms are simulated using 8 standard function test evaluations,and their convergence speed and convergence precision are analyzed.The results show that the NDPSO algorithm outperforms other algorithms in terms of single-peak function or multi-peak function.
作者
徐浩天
季伟东
孙小晴
罗强
XU Haotian;JI Weidong;SUN Xiaoqing;LUO Qiang(School of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,Heilongjiang Province,P.R.China)
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2020年第2期208-213,共6页
Journal of Shenzhen University(Science and Engineering)
基金
国家自然科学基金资助项目(31971015)
哈尔滨市科技局科技创新人才研究专项资助项目(2017RAQXJ050)
哈尔滨师范大学硕士研究生创新科研资助项目(HSDSSCX2019-08)~~
关键词
人工智能
群体智能算法
粒子群算法
惯性权重
正态分布
衰减策略
artificial intelligence
swarm intelligence algorithm
particle swarm optimization
inertia weight
normal distribution
attenuation strategy