期刊文献+

Effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO-Al2O3-TiO2-CaO-SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio 被引量:7

MgO/Al2O3比对MgO-Al2O3-TiO2-CaO-SiO2低碱度高钛渣黏流行为和结构的影响(英文)
下载PDF
导出
摘要 The effects of MgO/Al2 O3 ratio on the viscous behaviors of MgO-Al2 O3-TiO2-CaO-SiO2 systems were investigated by the rotating cylinder method.Raman spectroscopy was used to analyze the structural characteristics of slag and Factsage 7.0 was adopted to demonstrate the liquidus temperature of slag.The results show that the viscosity and activation energy for viscous flow decrease when the MgO/Al2O3 ratio increases from 0.82 to 1.36.The break point temperature and liquidus temperature of slag initially decrease and subsequently increase.The complex viscous structures are gradually depolymerized to simple structural units.In conclusion,with the increase of MgO/Al2O3 ratio,the degree of polymerization of slag decreases,which improves the fluidity of slag.The variations of liquidus temperature of slag lead to the same changes of break point temperature. 运用旋转柱体法分析MgO/Al2O3比对MgO-Al2O3-TiO2-CaO-SiO2渣系黏流行为的影响。采用拉曼光谱研究渣系结构特征,结合Factsage 7.0热力学软件分析实验渣系液相线温度。结果表明,当MgO/Al2O3比由0.82升高至1.36时,渣系黏度和黏流活化能降低,渣系熔化性温度和液相线温度先降低后升高,渣中复杂黏滞结构逐渐解聚为简单黏滞流动单元。随MgO/Al2O3比升高,实验渣系聚合程度降低,实验渣系流动性得到改善,使得渣系黏度和黏流活化能降低。此外,渣系液相线温度随MgO/Al2O3比的变化导致渣系熔化性温度发生对应变化。
作者 Cong FENG Li-hua GAO Jue TANG Zheng-gen LIU Man-sheng CHU 冯聪;高立华;唐珏;柳政根;储满生(东北大学冶金学院,沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,沈阳110819)
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期800-811,共12页 中国有色金属学报(英文版)
基金 Projects(51574067,51904063)supported by the National Natural Science Foundation of China Projects(N172503016,N172502005,N172506011)supported by Fundamental Research Funds for the Central Universities,China Project(2018M640259)supported by China Postdoctoral Science Foundation
关键词 vanadium-bearing titanomagnetite titanium-bearing slag viscous behavior degree of polymerization of slag MgO/Al2O3 ratio 钒钛磁铁矿 含钛渣系 黏流行为 渣系聚合程度 MgO/Al2O3比
  • 相关文献

参考文献2

二级参考文献30

  • 1E. Hukkanen, H. Walden, Inl. J. Miner. Process. 15 (1985) 89-102.
  • 2S. Y. Chen, X.J. Fu. M. S. Chu, Z. G. Liu, J. Tang. J. (?lean. Prod. 101 (2015) 122-128.
  • 3H. Y. Sun, J. S. Wang, Y. H. Han. X. F. She, Q. G. Xue. Int. J. Miner. Process. 125 (2013) 122-128.
  • 4Y, Ghen, M.S. Chu, Int. J. Miner. Metail. Mater. 21 (2014) 225-223.
  • 5S.Y. Chen. M.S. Chu, J. South. Aft. Inst. Min. Metal[. 114 (2014) 481-487.
  • 6J. Yang. S. I,ei, J, Yu, G. W. Xu, J. Environ. Chem. Eng. 2 (2014) 1007-1010.
  • 7X. H. l,iu,G, S. Gal. Y. F. Yang, Z. T. Sui, L. I,i, J. X. Fu, J. Chin. Univ. Min. Techno. 18 (2008) 275-278.
  • 8L. S. Zhao, L. N. Wang, T. Qi, D. S. Chen, H. X. Zhao. Y. H. Liu, Hydrometallurgy 149 (2014) 106-109.
  • 9D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang. I,.N. Wang, J. Hazard. Mater. 244-245 (2013) 588-595.
  • 10X.W. Lv. Z.G. I,un, J.Q. Yin, C.G.B.ai, ISIJ Int. 53 (2013) 1115-1119.

共引文献17

同被引文献73

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部