摘要
Pathogenic bacterial contaminations in water cause serious or even lethal threats.Strategies that effectively kill bacteria without causing environmental contamination are urgently needed in a wide range of applications.We prepared recyclable antimicrobial magnetic nanoparticles,Fe304@P(St-coAcQAC),through surfactant-free seeded emulsion polymerization involving a polymerizable,hydrophobic quaternary ammonium compound(QAC).Fe304 particles were first synthesized by a solvothermal reaction,followed by functionalization with a methacrylic silane(MPS),and then copolymerized with a QAC-containing acrylic monomer(AcQAC),leading to Fe304@P(St-co-AcQAC) nanoparticles.As confirmed by antibacterial assays,these Fe304@P(St-co-AcQAC) nanoparticles exhibited strong antimicrobial action against both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli,without leaching out any bactericidal agent.An additional benefit of antimicrobial magnetic particles is that they can be easily recycled while maintaining excellent antimicrobial efficacy.
Pathogenic bacterial contaminations in water cause serious or even lethal threats.Strategies that effectively kill bacteria without causing environmental contamination are urgently needed in a wide range of applications.We prepared recyclable antimicrobial magnetic nanoparticles,Fe304@P(St-coAcQAC),through surfactant-free seeded emulsion polymerization involving a polymerizable,hydrophobic quaternary ammonium compound(QAC).Fe304 particles were first synthesized by a solvothermal reaction,followed by functionalization with a methacrylic silane(MPS),and then copolymerized with a QAC-containing acrylic monomer(AcQAC),leading to Fe304@P(St-co-AcQAC) nanoparticles.As confirmed by antibacterial assays,these Fe304@P(St-co-AcQAC) nanoparticles exhibited strong antimicrobial action against both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli,without leaching out any bactericidal agent.An additional benefit of antimicrobial magnetic particles is that they can be easily recycled while maintaining excellent antimicrobial efficacy.
基金
the Distinguished Chair in Materials Science Endowment Fund at Georgia Southern University for the partial financial support of this research