期刊文献+

融合时序相关性的课堂异常行为识别 被引量:2

Classroom Abnormal Behavior Recognition Based on Sequential Correlation
下载PDF
导出
摘要 针对人体行为最重要的motion特征,提出了基于时间上下文的二级递推异常行为识别方法.不同于传统深度学习的训练方法,本文方法不是直接从图像数据中学习特征,而是把提取的形状信息HOG特征作为训练输入.首先提取基于HOG算法的图像形状特征,采用提取到的特征训练DBN网络.其次利用已经训练好的DBN网络和Softmax分类器识别出人体粗目标区,然后根据粗目标区域的时序上下文信息,计算质心加速度.最后判断加速度的阈值,识别出异常行为的精目标区.本文将粗细目标结合的二级递推方法应用到课堂行为识别中,通过实验结果表明,该方法在运动模糊和目标密集遮挡的场景下都能较好地识别出课堂行为,识别率相比其他方法有较大提升.课堂异常行为数据分析,可在课堂动态管理和学习效果评估等方面发挥辅助作用. Aiming at the most important motion characteristics of human behavior,a second-level recursive anomaly behavior recognition method based on time context is proposed.Different from traditional deep learning training methods,this method does not directly learn features from image data,but extracts them.The shape information HOG feature is used as the training input.Firstly,the image shape feature based on the HOG algorithm is extracted,and the extracted feature is used to train the DBN network.Secondly,the trained DBN network and the Softmax classifier are used to identify the human body coarse target region,and then according to the coarse The time-series context information of the target area,calculate the centroid acceleration.Finally,the threshold of the acceleration is judged,and the precise target area of the abnormal behavior is identified.This paper applies the two-level recursive method combining the weight and the target to the classroom behavior recognition,and the experimental results show that the The method can better recognize the classroom behavior in the scenes of motion blur and target dense occlusion,and the recognition rate is greatly improved compared with other methods.Classroom abnormal behavior data analysis can play a supporting role in classroom dynamic management and learning effect evaluation.
作者 王明芬 卢宇 WANG Ming-Fen;LU Yu(Concord University College Fujian Normal University,Fuzhou 350117,China)
出处 《计算机系统应用》 2020年第3期173-179,共7页 Computer Systems & Applications
基金 福建省重点项目(2017H0011) 福建省教育厅项目(JT180823) 福建省级教改项目(FBJG20180130)。
关键词 DBN网络 HOG特征 时序相关性 二级递推 异常行为 DBN network HOG feature time series correlation two-level recursion abnormal behavior
  • 相关文献

参考文献6

二级参考文献105

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献237

同被引文献32

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部