期刊文献+

含隐藏吸引子的分数阶Sprott E系统动力学分析及投影同步 被引量:2

Dynamics analysis and projective synchronization of fractional Sprott E systems with hidden attractors
下载PDF
导出
摘要 调整分数阶Sprott E系统的参数,使其仅含有一个稳定平衡点.根据分数阶稳定理论,分析系统平衡点的稳定性,证明隐藏吸引子的存在.使用分岔图、相轨迹、功率谱、时序图、庞加莱截面方法,分析该系统的混沌动力学行为.基于投影同步的方法设计控制器,对系统进行同步控制.数值仿真结果表明该控制器具有有效性. To include only one stable equilibrium point,the parameters of the fractional Sprott E system were adjusted.According to the theory of fractional stability,the stability of the equilibrium point of the system was analyzed,and the existence of hidden attractors was verified.The chaotic dynamic behavior of the system was analyzed by using the bifurcation diagram,the phase trajectory,the power spectrum,the timing diagram,and the Poincare section method.The controller was designed based on the method of projection synchronization to synchronize the system.Numerical simulation results showed that the controller was effective.
作者 张盟琦 张宏立 王聪 ZHANG Mengqi;ZHANG Hongli;WANG Cong(College of Electrical Engineering,Xinjiang University,Urumqi 830047,China)
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2020年第2期51-57,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(51767022)。
关键词 Sprott E系统 隐藏吸引子 混沌 投影同步 Sprott E system hidden attractor chaos projection synchronization
  • 相关文献

参考文献3

二级参考文献63

  • 1M. Chadli,I. Zelinka,T. Youssef.Unknown inputs observer design for fuzzy systems with application to chaotic system reconstruction[J]. Computers and Mathematics with Applications . 2013 (2)
  • 2M. Sadeghpour,H. Salarieh,A. Alasty.Controlling chaos in tapping mode atomic force microscopes using improved minimum entropy control[J]. Applied Mathematical Modelling . 2013 (3)
  • 3A.S. Hegazi,E. Ahmed,A.E. Matouk.On chaos control and synchronization of the commensurate fractional order Liu system[J]. Communications in Nonlinear Science and Numerical Simulation . 2013 (5)
  • 4Xiong Wang,Guanrong Chen.Constructing a chaotic system with any number of equilibria[J]. Nonlinear Dynamics . 2013 (3)
  • 5Ivan Zelinka,Mohammed Chadli,Donald Davendra,Roman Senkerik,Roman Jasek.An investigation on evolutionary reconstruction of continuous chaotic systems[J]. Mathematical and Computer Modelling . 2013 (1-2)
  • 6Xiong Wang,Guanrong Chen.A chaotic system with only one stable equilibrium[J]. Communications in Nonlinear Science and Numerical Simulation . 2011 (3)
  • 7Huitao Zhao,Yiping Lin,Yunxian Dai.Bifurcation analysis and control of chaos for a hybrid ratio-dependent three species food chain[J]. Applied Mathematics and Computation . 2011 (5)
  • 8Jianguo Du,Tingwen Huang,Zhaohan Sheng,Haibin Zhang.A new method to control chaos in an economic system[J]. Applied Mathematics and Computation . 2010 (6)
  • 9Hassard BD,Kazarinoff ND,Wan YH.Theory and Applications of Hopf Bifurcation. London Mathematical Society lecture Note Series . 1981
  • 10Chen G,Dong X.On feedback control of chaotic continuous-time systems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications . 1993

共引文献38

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部