期刊文献+

一种KD树集成偏标记学习算法 被引量:2

A ensemble K-dimension tree for partial label learning
下载PDF
导出
摘要 针对样本集不均衡造成分类器精度不足的问题,提出一种KD树均衡训练集的集成偏标记学习算法。按照伪标签划分样本,采用KD树检索的方式均衡训练集,再采用多个分类器投票方式实现消岐,最终运用集成学习的方法实现分类。在公开数据集上的仿真实验结果表明,该偏标记学习算法在分类上具有较好的表现力。 In partial label learning framework,how to eliminate the impact of candidate label on model learning is crucial.Aiming at the lack of accuracy of the classifier due to the imbalance of the sample set,an ensemble partial label learning method for K-dimension tree equilibrium training set is proposed in this paper.Firstly,the samples are divided according to the candidate label,and the training set is balanced by the KD tree retrieval method.Then,multiple classifier voting methods are used to achieve the elimination.Finally,the ensemble learning method is used to realize the classification.The simulation experiments are carried out on the public dataset.The experimental results show that the proposed partial marker learning algorithm has better performance for classification.
作者 卢勇全 刘振丙 颜振翔 方旭升 LU Yongquan;LIU Zhenbing;YAN Zhenxiang;FANG Xusheng(School of Electronic Engineering and Automation,Guilin University of ElectronicTechnology,Guilin 541004,China;School of Computer and Information Security,Guilin University of ElectronicTechnology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2019年第6期454-459,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61562013,61866009) 广西自然科学基金(2017GXNFDA198025) 桂林电子科技大学研究生教育创新计划(2017YJCX101)。
关键词 偏标记学习 伪标签 KD树 集成学习 均衡训练集 partial label learning candidate label K-dimension tree ensemble learning balance training set
  • 相关文献

参考文献1

二级参考文献34

  • 1Mitchell T M. Machine learning[,M]. New York: McGraw-Hill, 1997.
  • 2Pfahringer B. Learning with weak supervision: Charting the territory[C]//Keynote Talk at the 1st International Workshop on I.earning with Weak Supervision ( LAWS' 12, in conjunction with ACML' 12). Singapore : [ s. n. ], 2012.
  • 3Cour T, Sapp B, Taskar B. Learning from partial labels[J]. Journal of Machine Learning Research, 2011, 12: 1501-1536.
  • 4Cour T, Sapp B, Jordan C, et al. Learning from ambiguous labeled images[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, FL:[s. n. ], 2009: 919-926.
  • 5Zeng Z, Xiao S, Jia K, et al. Learning by associating ambiguously labeled images[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Portland, OR:[s. n. ], 2013: 708-715.
  • 6Jie L, Orabona F. Learning from candidate labeling sets[C]//Advances in Neural Information Processing Systems 23. Cam- bridge, MA: MIT Press, 2010: 1504-1512.
  • 7Liu L, Dietterich T. A conditional multinomial mixture model for superset label learning[C]//Advances in Neural Informa- tion Processing Systems 25. Cambridge, MA: MIT Press, 2012: 557-565.
  • 8Grandvalet Y. Logistic regression for partial labels[C]//Proceedings of the 9th International Conference on Information Pro- cessing and Management of Uncertainty in Knowledge-Based Systems. Annecy, France:[s. n. ], 2002: 1935-1941.
  • 9Jin R, Ghahramani Z. Learning with multiple labels[C]//Advances in Neural Information Processing Systems 15. Cam- bridge, MA: MIT Press, 2003: 897-904.
  • 10Chapelle O, Sch61kopf B, Zien A. Semi-supervised learning[M]. Cambridge, MA: MIT Press, 2006.

共引文献12

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部