期刊文献+

一种基于深度学习的产品分类统计方法的研究 被引量:3

Research on Statistical Method of Product Classification Based on Deep Learning
下载PDF
导出
摘要 对于流水线上多类产品不规则混合放置条件下的统计问题,利用基于faster R-CNN和改进的深度卷积网络结合的图像识别方法,实现了对产品的在线分类计数。首先利用faster R-CNN方法获取图像中产品的位置信息,然后用改进的深度卷积网络对图像进行特征提取,将产品区域的位置信息映射到最后一层特征图上,再用ROI池化对产品区域特征进行尺度归一化,把归一化后的产品特征输入softmax分类器识别,从而实现了分类统计。实验结果表明,该方法能够在工业生产中实现多类混线产品在线自动分类统计。 For the statistical problems of irregular products mixed with multiple products on the production line,we use the image recognition method based on the faster R-CNN and the improved deep convolution network to achieve the classification and counting of products in the production line. Firstly,we use the faster R-CNN method to obtain the location information of the product in the image,and then we use the improved convolutional neural networks to extract image feature. Then the location information of the product area is mapped to the last layer of feature map,the scale normalization of the product area features is carried out by ROI pool. The normalized product features are entered into softmax classifier recognition,and the classification statistics of the products are finally realized. The experimental results show that the method can realize online classification and statistics of multi class collinear products in industrial production.
作者 王占云 闫志华 WANGZhan-yun;YANZhi-hua(School of Mechanical Engineering,Zhengzhou University,He’nan Zhengzhou450001,China)
出处 《机械设计与制造》 北大核心 2020年第3期163-166,共4页 Machinery Design & Manufacture
关键词 深度学习 分类统计 图像识别 FASTER R-CNN ROI池化 Depth Learning Classification Statistics Image Recognition Faster R-CNN ROI Pooling
  • 相关文献

参考文献4

二级参考文献35

  • 1卢旭锦.基于Keil C的AT24C02串行E^2PROM的编程[J].现代电子技术,2007,30(8):154-157. 被引量:16
  • 2杨仲望,金天均,吕征宇.开关电源中光耦隔离的几种典型接法对比研究[J].机电工程,2007,24(5):56-59. 被引量:12
  • 3Tsai Y.A Versatile Camera Calibration Technique for High-accuracy 3D Machine Vision Metrology Using Off-the Shelf TV Cameras and Lenses[J].IEEE Journal of Robotics and Automation,1987,RA-3(4):323-344.
  • 4Liu Lei,Wang Yongji.Robotic Dynamic Target Recognition and Tracking Based on the Monocular Vision.Control Conference,2007.CCC2007.Chinese,2007:193-197.
  • 5Szegedy C, Liu W, Jia Y, et al. Going deeper with convolu-tions. arXiv preprint arXiv: 1409.4842,2014.
  • 6He K, Zhang X,Ren S, et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classifica-tion. arXiv preprint arXiv: 1502.01852, 2015.
  • 7Le QV. Building high-level features using large scaleunsupervised learning. 2013 IEEE International Conferenceon Acoustics, Speech and Signal Processing (ICASSP). IEEE,2013.8595-8598.
  • 8Deng L. A tutorial survey of architectures, algorithms, andapplications for deep learning. APSIPA Trans, on Signal andInformation Processing, 2014, 3: e2.
  • 9Krizhevsky A, Sutskever I,Hinton GE. Imagenetclassification with deep convolutional neural networks.Advances in Neural Information Processing Systems, 2012:1097-1105.
  • 10Hinton GE, Osindero S, Teh YW. A fast learning algorithm fordeep belief nets. Neural Computation, 2006,18(7): 1527-1554.

共引文献47

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部