期刊文献+

新型并联梯度蜂窝结构的面内力学性能 被引量:13

In-plane crushing behaviors of honeycombs with a novel parallel graded design
原文传递
导出
摘要 借鉴并联弹簧系统的联接机制,基于功能梯度的概念建立了并联梯度蜂窝结构(HPD)的理论和有限元模型。从变形模式、平台应力和吸能性能三方面讨论了梯度系数对HPD面内力学特性的影响。研究结果表明,梯度系数只影响动态压缩下HPD的变形模式。当梯度系数较大时,并联梯度对HPD平台区域有显著提高,能量吸收能力也随之提高。本研究深刻了解并联梯度对HPD内在特性的影响具有十分重要的意义。 Based on the mechanism of parallel spring system,theoretical and finite element models of honeycomb with parallel design(HPD)were created based on the concept of functional gradient.The effects of graded coefficient on the in-plane mechanical properties of HPD,including deformation mode,plateau stress and energy absorption,were discussed.The results show that variation of graded coefficient can influence the deformation modes of HPD only under dynamic compression.When the graded coefficient is relatively large,parallel design can improve the plateau property of HPD.Meanwhile,the energy absorption of HPD is also improved.This research provides deep insight into the in-plane properties of HPD with different graded coefficients.
作者 李振 丁洋 王陶 王良模 LI Zhen;DING Yang;WANG Tao;WANG Liangmo(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《复合材料学报》 EI CAS CSCD 北大核心 2020年第1期155-163,共9页 Acta Materiae Compositae Sinica
基金 江苏省研究生科研创新计划(KYCX17_0335) 中央高校基本科研业务费专项资金(309181B8809) 国家科技重大专项课题(2018ZX04024001)。
关键词 并联梯度布局 面内压缩 蜂窝结构 变形模式 平台应力 能量吸收 有限元分析 parallel graded configuration in-plane compression honeycomb deformation mode plateau stress energy absorption finite element analysis
  • 相关文献

参考文献4

二级参考文献58

  • 1杜志鹏,李晓彬,夏利娟,金咸定.反舰导弹攻击舰船舷侧防护结构过程数值仿真[J].哈尔滨工程大学学报,2006,27(4):484-487. 被引量:9
  • 2卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535. 被引量:253
  • 3姚熊亮,侯明亮,李青,李克杰.Y型舷侧结构抗冲击性能数值仿真实验研究[J].哈尔滨工程大学学报,2006,27(6):796-801. 被引量:14
  • 4王博,王斌,程耿东.Kagome蜂窝夹层平板的多功能优化设计[J].复合材料学报,2007,24(3):109-115. 被引量:26
  • 5Gandhi F. Skin Design Studies for Variable Camber Morphing Airfoils[J]. Smart Materials and Struc- tures, 2008,17 (1) : 015025-015033.
  • 6Kudva J. Overview of the DAPRA Smart Wing Project[J]. J. Intell. Mater. Syst. Struct. ,2004,15 (26) : 1-7.
  • 7Monner H P. Realization of an Optimized Wing Camber by Using Form Variable Flap Structures [J]. Aerospace Science Technology, 2001,5 (7) :445- 455.
  • 8Yokozeki T, Takeda S I, Ogasawara T, et al. Me- chanical Properties of Corrugated Composites for Candidate Materials of Flexible Wing Structures [J]. Composites,2006,37(10) :1578-1586.
  • 9Thill C, Etches J A. Composite Corrugated Struc tures for Morphing Wing Skin Applications [J] Smart Materials and Structures, 2010, 19 (12) 124009-124019.
  • 10Bettini P, Airoldi A, Sala G, et al. Composite Chiral Structures for Morphing Air Foils: Numerical Ana- lyses and Development of a Manufacturing Process [J]. Composites,2010,41 : 133-147.

共引文献67

同被引文献122

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部