期刊文献+

适应配电网网格化规划的可靠性预测方法 被引量:10

Reliability prediction method adapted to grid planning in distribution network
下载PDF
导出
摘要 网格化规划是在配电网规模日益扩大的背景下提出的一种规划新模式。根据网格划分原则将供电区域划分为多个供电网格,对每个网格分别进行规划。考虑网格化规划的特点和传统可靠性评估方法的局限性,提出了基于可靠性历史数据的预测模型,主要针对原始数据信息量相对不足的规划网架进行可靠性预测。采用灰色关联分析法选取影响供电可靠性的关键因素作为预测模型的输入;为了提高预测模型的准确性,采用三种科学常用的预测模型,包括回归预测法、灰色预测法、人工神经网络法,分别预测可靠性指标;对某网格化规划区域的实例分析表明,所提模型能够有效预测规划网架未来一定时间的可靠性水平。 Grid planning is a novel planning model proposed in the context of the increasing scale of distribution networks.According to the principle of grid division,the power supply area is divided into multiple power supply grids,and each grid is separately planned.Considering the characteristics of grid planning and the limitations of traditional reliability assessment methods,a prediction model based on reliability historical data is proposed,which is mainly used to predict the reliability of the grid framework with relatively insufficient original data information.Firstly,the key factors affecting the power supply reliability are selected by the grey correlation analysis method as the input of the prediction model.Then,in order to improve the accuracy of the prediction model,three scientific commonly used prediction models,including regression prediction method,grey prediction method and artificial neural network method are used to predict the reliability index respectively.Finally,an example analysis of a grid planning area shows that the proposed model can effectively predict the reliability of the planning grid in a certain period of time.
作者 方学智 李傲伟 龙琴 刘涌 袁秋实 Fang Xuezhi;Li Aowei;Long Qin;Liu Yong;Yuan Qiushi(Kaili Power Supply Bureau,Guizhou Power Grid Co.,Ltd.,Kaili 556000,Guizhou,China;Shanghai Proinvent Information Technology Co.,Ltd.,Shanghai 200240,China;Kaili Sansui Power Supply Bureau,Guizhou Power Grid Co.,Ltd.,Kaili 556500,Guizhou,China)
出处 《电测与仪表》 北大核心 2020年第3期72-78,93,共8页 Electrical Measurement & Instrumentation
基金 国网山西省电力公司科技项目(52053017000N)
关键词 网格化规划 可靠性预测 关联分析 grid planning reliability prediction correlation analysis
  • 相关文献

参考文献13

二级参考文献83

共引文献214

同被引文献135

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部