期刊文献+

临界Hartree方程组基态解的存在性

The Ground State Solution of Critical Hartree System
原文传递
导出
摘要 本文考虑临界耦合的Hartree方程组{-△+λu=∫Ω|u(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,-△+νu=∫Ω|ν(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,其中Ω是RN中带有光滑边界的有界区域,N≥3,λ,v是常数,且满足λ,v>-λ1(Ω),λ1(Ω)是(-△,H01(Ω))的第一特征值,β> 0是耦合参数,临界指标2μ*=(2N-μ)/(N-2)来源于Hardy-LittlewoodSobolev不等式,利用变分的方法证明了临界Hartree方程组基态正解的存在性. In this paper,we are interested in the following critical coupled Hartree system{-△+λu=∫Ω|u(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,-△+νu=∫Ω|ν(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,where Ω■R^N(N≥3) is a smooth bounded domain,λ,v> λ1(Ω) are constants,λ1(Ω) is the first eigenvalue of(-△,H01(Ω)),β> 0 is a coupling parameter,2μ*=(2 N-μ)/(N-2) due to the HardyLittle wood-Sobolev inequality.By using the variational method,the existence of positive ground state solution of this system is proved.
作者 郑雨 沈自飞 ZHENG Yu;SHEN Zifei(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua,Zhejiang,321004,P.R.Chino)
出处 《数学进展》 CSCD 北大核心 2020年第1期53-63,共11页 Advances in Mathematics(China)
基金 supported by NSFC(No.11671364)。
关键词 Hartree方程组 Brezis-Nirenberg问题 Hardy-Littlewood-Sobolev不等式 临界指标 Hartree system Brezis-Nirenberg problem Hardy-Littlewood-Sobolev inequality critical exponent
  • 相关文献

参考文献1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部