期刊文献+

基于网格多密度的古建筑图像特征匹配方法 被引量:9

Feature Matching Based on Grid and Multi-Density for Ancient Architectural Images
下载PDF
导出
摘要 古建筑图像三维重建中图像特征可靠匹配是影响重建效果的一个关键问题.为提高古建筑图像特征的匹配性能,提出了一种基于网格多密度聚类的特征匹配方法.该方法首先采用SIFT算子获取图像特征点;其次对图像进行网格划分,依据网格单元特征点密度确定图像锚单元、邻居单元、边界单元;然后依据局部区域密度相似性确定图像簇;最后对相似簇中的特征点依据最近邻距离比准则进行匹配.在中国古代建筑三维重建数据集和141幅山西晋祠古建筑图像上进行了实验,验证了算法的有效性. The 3 D reconstruction of Chinese ancient architecture from images is a difficult problem in image based modeling, where the image matching is a key factor. To improve the feature matching performance cross images, a new method, FM_GMC, is proposed in this work, which is based on grid partition and multi-density clustering of key-points in grids. Firstly, SIFT is adopted to extract images key-points. Then images are partitioned into grids and key-points densities in grids are computed, from which anchor cells, neighbor cells, and border cells are determined. Meanwhile, the connected regions of such labeled cells are defined as clusters according to the similarity of local regions. Finally, key-points matching within similar clusters is carried out by the nearest neighbor distance ratio(NNDR). The matching results validate our proposed method on 3 D Reconstruction Dataset and 141 typical architectural images about Jinci.
作者 聂瑶瑶 胡立华 张继福 张素兰 Nie Yaoyao;Hu Lihua;Zhang Jifu;Zhang Sulan(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第3期437-444,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61873264) 国家自然科学基金青年科学基金(61602335).
关键词 特征匹配 网格多密度聚类 古建筑图像 SIFT算子 三维重建 feature matching grid and multi-density clustering ancient architectural images SIFT 3D reconstruction
  • 相关文献

参考文献4

二级参考文献32

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2王熙照,安素芳.基于极大模糊熵原理的模糊产生式规则中的权重获取方法研究[J].计算机研究与发展,2006,43(4):673-678. 被引量:7
  • 3邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 4Tang A W K, Ng T P, Hung Y S, et al. Projective Reconstruction from Line-Correspondences in Multiple Uncalibrated Images. Pattern Recognition, 2006, 39 (5) : 889 - 896
  • 5Aider O A, Hoppenot P, Colle E. A Model-Based Method for Indoor Mobile Robot Localization Using Monocular Vision and Straight-Line Correspondences. Robotics and Autonomous Systems, 2005, 52(2/3 ) : 229 - 246
  • 6Shi Fanhuai, Wang Jianhua, Zhang Jing, et al. Motion Segmentation of Multiple Translation Objects from Line Correspondences. Pat- tern Recognition, 2005, 38(10) : 1775 -1778
  • 7Bartoli A, Sturm P. Multiple-View Structure and Motion from Line Correspondences // Proc of the IEEE International Conference on Computer Vision. Madison, USA, 2003 : 207 -212
  • 8Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 509 -522
  • 9Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91 -110
  • 10Ke Yan, Sukthankar R. PCA-SIFF: A More Distinctive Representation for Local Image Descriptors// Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, II : 506 -513

共引文献84

同被引文献92

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部