期刊文献+

基于流数据聚类算法的电力大数据异常检测 被引量:15

Power Big Data Anomaly Detection Based on Stream Data Clustering Algorithm
下载PDF
导出
摘要 针对电力大数据流的异常检测问题,该文将流数据聚类算法与电力大数据相结合,针对现有流数据聚类算法不易存储全部数据、断电数据易丢失等问题,以及流数据聚类算法对于离线阶段聚类算法实时应答的要求,从数据的完整性、安全性以及流数据聚类算法的低时间复杂度的角度出发,对CluStream流数据聚类算法进行改进,提出流式K-means聚类算法。对在线阶段,使用Redis集群进行流数据的缓冲,并设计节点时间衰减策略,增大心跳消息中有效消息所占比例;对离线阶段聚类算法进行优化,使用最佳距离法确定初始聚类中心,减少迭代次数;最后,使用所提出的流式K-means聚类算法进行用户用电异常行为检测,实验结果表明,该算法能够很好的发现用户用电异常行为。 To solve the abnormal value detection of power big data stream,this paper combines stream data clustering algorithm with power big data,and the problem that the existing stream data clustering algorithm is easy to lose data,can’t store all data,and lack of real-time response of the stream data clustering algorithm’s offline stage clustering algorithm.From the perspective of data security,integrity and low time complexity of stream data clustering algorithms,this paper improves the CluStream stream data clustering algorithm and proposes a streaming K-means clustering algorithm.For the online phase,the Redis cluster is used to buffer the stream data,and the node time decay strategy is designed to increase the proportion of valid messages in the heartbeat message;The offline partial clustering algorithm is optimized,and the optimal clustering method is used to determine the initial clustering center and reduce the number of iterations.Finally,the proposed K-means clustering algorithm is used to detect the abnormal customer electricity behavior.The experimental result shows that the algorithm can well detect the abnormal behavior of customers.
作者 于小青 齐林海 YU Xiaoqing;QI Linhai(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《电力信息与通信技术》 2020年第3期8-14,共7页 Electric Power Information and Communication Technology
基金 国家电网公司科技项目资助“城市电网电能质量大数据深化分析及应用技术研究”(52094018001C)。
关键词 电力大数据 流数据聚类 流式K-means聚类 用户用电异常 power big data stream data clustering streaming K-means clustering abnormal customer electricity behavior
  • 相关文献

参考文献5

二级参考文献37

  • 1朱明伦,胡金初.Linux下基于B/S的高并发Web服务优化研究[J].计算机技术与发展,2006,16(5):140-142. 被引量:3
  • 2何轶璇,罗毅,涂光瑜.EMS数据流管理系统的框架设计[J].电力系统自动化,2006,30(24):33-38. 被引量:8
  • 3王珊,肖艳芹,刘大为,覃雄派.内存数据库关键技术研究[J].计算机应用,2007,27(10):2353-2357. 被引量:52
  • 4中国电机工程学会信息化专委会.中国电力大数据发展白皮书[S].北京:中国电力出版社,2013.
  • 5UKIL A, ZIVANOVIC R. Automated analysis of power systems disturbance records: smart grid big data perspective [C]// IEEE Innovative Smart Grid Technologies--Asia (ISGT Asia), May 20-23, 2014, Kuala Lumpur, Malaysia: 126-131.
  • 6KUCUK D, BOYRAZOGLU B, BUHAN S. PQStream: a data stream architecture for electrical power quality [C]// International Workshop on Knowledge Discovery from Ubiquitous Data Streams, September 17, 2007, Warsaw, Poland : 12p.
  • 7VLAD1MIRO M, ADRIANA R G C, SHIGEAKI L. Diagnosing faults in power transformers with autoassociative neural networks and mean shift [J]. IEEE Trans on Power Delivery, 2012, 27(3): 1350-1357.
  • 8LUO Gang, SHI Dongyuan, CHEN Jinfu. Automatic indentification of transmission sections based on complex network theory [J]. IET Generation Transmission & Distribution, 2013, 8(7):1203-1210.
  • 9LEIBIUSKY J, EISBRUCH G, S1MONASSI D. Getting started with storm[M]. Sebastopol, USA: O' Reilly Media, 2012.
  • 10张伊辉,马延峰,韩平军,赵明渊.电力负荷管理终端防电流法窃电装置研制[J].电力自动化设备,2009,29(11):132-135. 被引量:12

共引文献212

同被引文献190

引证文献15

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部